The GCD of given numbers is 10.
Step 1 : Find prime factorization of each number.
$$\begin{aligned}1090 =& 2\cdot5\cdot109\\[8pt]5101000 =& 2\cdot2\cdot2\cdot5\cdot5\cdot5\cdot5101\\[8pt]\end{aligned}$$(view steps on how to factor 1090 and 5101000. )
Step 2 : Put a box around factors that are common for all numbers:
$$\begin{aligned}1090 =& \color{blue}{\boxed{2}}\cdot\color{red}{\boxed{5}}\cdot109\\[8pt]5101000 =& \color{blue}{\boxed{2}}\cdot2\cdot2\cdot\color{red}{\boxed{5}}\cdot5\cdot5\cdot5101\\[8pt]\end{aligned}$$Step 3 : Multiply the boxed numbers together:
$$ GCD = 2\cdot5 = 10 $$This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.