The GCD of given numbers is 1.
Step 1 :
Divide $ 9353919043 $ by $ 12091 $ and get the remainder
The remainder is positive ($ 7077 > 0 $), so we will continue with division.
Step 2 :
Divide $ 12091 $ by $ \color{blue}{ 7077 } $ and get the remainder
The remainder is still positive ($ 5014 > 0 $), so we will continue with division.
Step 3 :
Divide $ 7077 $ by $ \color{blue}{ 5014 } $ and get the remainder
The remainder is still positive ($ 2063 > 0 $), so we will continue with division.
Step 4 :
Divide $ 5014 $ by $ \color{blue}{ 2063 } $ and get the remainder
The remainder is still positive ($ 888 > 0 $), so we will continue with division.
Step 5 :
Divide $ 2063 $ by $ \color{blue}{ 888 } $ and get the remainder
The remainder is still positive ($ 287 > 0 $), so we will continue with division.
Step 6 :
Divide $ 888 $ by $ \color{blue}{ 287 } $ and get the remainder
The remainder is still positive ($ 27 > 0 $), so we will continue with division.
Step 7 :
Divide $ 287 $ by $ \color{blue}{ 27 } $ and get the remainder
The remainder is still positive ($ 17 > 0 $), so we will continue with division.
Step 8 :
Divide $ 27 $ by $ \color{blue}{ 17 } $ and get the remainder
The remainder is still positive ($ 10 > 0 $), so we will continue with division.
Step 9 :
Divide $ 17 $ by $ \color{blue}{ 10 } $ and get the remainder
The remainder is still positive ($ 7 > 0 $), so we will continue with division.
Step 10 :
Divide $ 10 $ by $ \color{blue}{ 7 } $ and get the remainder
The remainder is still positive ($ 3 > 0 $), so we will continue with division.
Step 11 :
Divide $ 7 $ by $ \color{blue}{ 3 } $ and get the remainder
The remainder is still positive ($ 1 > 0 $), so we will continue with division.
Step 12 :
Divide $ 3 $ by $ \color{blue}{ 1 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 1 }} $.
We can summarize an algorithm into a following table.
| 9353919043 | : | 12091 | = | 773626 | remainder ( 7077 ) | ||||||||||||||||||||||
| 12091 | : | 7077 | = | 1 | remainder ( 5014 ) | ||||||||||||||||||||||
| 7077 | : | 5014 | = | 1 | remainder ( 2063 ) | ||||||||||||||||||||||
| 5014 | : | 2063 | = | 2 | remainder ( 888 ) | ||||||||||||||||||||||
| 2063 | : | 888 | = | 2 | remainder ( 287 ) | ||||||||||||||||||||||
| 888 | : | 287 | = | 3 | remainder ( 27 ) | ||||||||||||||||||||||
| 287 | : | 27 | = | 10 | remainder ( 17 ) | ||||||||||||||||||||||
| 27 | : | 17 | = | 1 | remainder ( 10 ) | ||||||||||||||||||||||
| 17 | : | 10 | = | 1 | remainder ( 7 ) | ||||||||||||||||||||||
| 10 | : | 7 | = | 1 | remainder ( 3 ) | ||||||||||||||||||||||
| 7 | : | 3 | = | 2 | remainder ( 1 ) | ||||||||||||||||||||||
| 3 | : | 1 | = | 3 | remainder ( 0 ) | ||||||||||||||||||||||
| GCD = 1 | |||||||||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.