The GCD of given numbers is 3.
Step 1 :
Divide $ 12345 $ by $ 8991 $ and get the remainder
The remainder is positive ($ 3354 > 0 $), so we will continue with division.
Step 2 :
Divide $ 8991 $ by $ \color{blue}{ 3354 } $ and get the remainder
The remainder is still positive ($ 2283 > 0 $), so we will continue with division.
Step 3 :
Divide $ 3354 $ by $ \color{blue}{ 2283 } $ and get the remainder
The remainder is still positive ($ 1071 > 0 $), so we will continue with division.
Step 4 :
Divide $ 2283 $ by $ \color{blue}{ 1071 } $ and get the remainder
The remainder is still positive ($ 141 > 0 $), so we will continue with division.
Step 5 :
Divide $ 1071 $ by $ \color{blue}{ 141 } $ and get the remainder
The remainder is still positive ($ 84 > 0 $), so we will continue with division.
Step 6 :
Divide $ 141 $ by $ \color{blue}{ 84 } $ and get the remainder
The remainder is still positive ($ 57 > 0 $), so we will continue with division.
Step 7 :
Divide $ 84 $ by $ \color{blue}{ 57 } $ and get the remainder
The remainder is still positive ($ 27 > 0 $), so we will continue with division.
Step 8 :
Divide $ 57 $ by $ \color{blue}{ 27 } $ and get the remainder
The remainder is still positive ($ 3 > 0 $), so we will continue with division.
Step 9 :
Divide $ 27 $ by $ \color{blue}{ 3 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 3 }} $.
We can summarize an algorithm into a following table.
| 12345 | : | 8991 | = | 1 | remainder ( 3354 ) | ||||||||||||||||
| 8991 | : | 3354 | = | 2 | remainder ( 2283 ) | ||||||||||||||||
| 3354 | : | 2283 | = | 1 | remainder ( 1071 ) | ||||||||||||||||
| 2283 | : | 1071 | = | 2 | remainder ( 141 ) | ||||||||||||||||
| 1071 | : | 141 | = | 7 | remainder ( 84 ) | ||||||||||||||||
| 141 | : | 84 | = | 1 | remainder ( 57 ) | ||||||||||||||||
| 84 | : | 57 | = | 1 | remainder ( 27 ) | ||||||||||||||||
| 57 | : | 27 | = | 2 | remainder ( 3 ) | ||||||||||||||||
| 27 | : | 3 | = | 9 | remainder ( 0 ) | ||||||||||||||||
| GCD = 3 | |||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.