The GCD of given numbers is 1.
Step 1 :
Divide $ 80045 $ by $ 5302 $ and get the remainder
The remainder is positive ($ 515 > 0 $), so we will continue with division.
Step 2 :
Divide $ 5302 $ by $ \color{blue}{ 515 } $ and get the remainder
The remainder is still positive ($ 152 > 0 $), so we will continue with division.
Step 3 :
Divide $ 515 $ by $ \color{blue}{ 152 } $ and get the remainder
The remainder is still positive ($ 59 > 0 $), so we will continue with division.
Step 4 :
Divide $ 152 $ by $ \color{blue}{ 59 } $ and get the remainder
The remainder is still positive ($ 34 > 0 $), so we will continue with division.
Step 5 :
Divide $ 59 $ by $ \color{blue}{ 34 } $ and get the remainder
The remainder is still positive ($ 25 > 0 $), so we will continue with division.
Step 6 :
Divide $ 34 $ by $ \color{blue}{ 25 } $ and get the remainder
The remainder is still positive ($ 9 > 0 $), so we will continue with division.
Step 7 :
Divide $ 25 $ by $ \color{blue}{ 9 } $ and get the remainder
The remainder is still positive ($ 7 > 0 $), so we will continue with division.
Step 8 :
Divide $ 9 $ by $ \color{blue}{ 7 } $ and get the remainder
The remainder is still positive ($ 2 > 0 $), so we will continue with division.
Step 9 :
Divide $ 7 $ by $ \color{blue}{ 2 } $ and get the remainder
The remainder is still positive ($ 1 > 0 $), so we will continue with division.
Step 10 :
Divide $ 2 $ by $ \color{blue}{ 1 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 1 }} $.
We can summarize an algorithm into a following table.
| 80045 | : | 5302 | = | 15 | remainder ( 515 ) | ||||||||||||||||||
| 5302 | : | 515 | = | 10 | remainder ( 152 ) | ||||||||||||||||||
| 515 | : | 152 | = | 3 | remainder ( 59 ) | ||||||||||||||||||
| 152 | : | 59 | = | 2 | remainder ( 34 ) | ||||||||||||||||||
| 59 | : | 34 | = | 1 | remainder ( 25 ) | ||||||||||||||||||
| 34 | : | 25 | = | 1 | remainder ( 9 ) | ||||||||||||||||||
| 25 | : | 9 | = | 2 | remainder ( 7 ) | ||||||||||||||||||
| 9 | : | 7 | = | 1 | remainder ( 2 ) | ||||||||||||||||||
| 7 | : | 2 | = | 3 | remainder ( 1 ) | ||||||||||||||||||
| 2 | : | 1 | = | 2 | remainder ( 0 ) | ||||||||||||||||||
| GCD = 1 | |||||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.