The GCD of given numbers is 1.
Step 1 :
Divide $ 889079 $ by $ 798216 $ and get the remainder
The remainder is positive ($ 90863 > 0 $), so we will continue with division.
Step 2 :
Divide $ 798216 $ by $ \color{blue}{ 90863 } $ and get the remainder
The remainder is still positive ($ 71312 > 0 $), so we will continue with division.
Step 3 :
Divide $ 90863 $ by $ \color{blue}{ 71312 } $ and get the remainder
The remainder is still positive ($ 19551 > 0 $), so we will continue with division.
Step 4 :
Divide $ 71312 $ by $ \color{blue}{ 19551 } $ and get the remainder
The remainder is still positive ($ 12659 > 0 $), so we will continue with division.
Step 5 :
Divide $ 19551 $ by $ \color{blue}{ 12659 } $ and get the remainder
The remainder is still positive ($ 6892 > 0 $), so we will continue with division.
Step 6 :
Divide $ 12659 $ by $ \color{blue}{ 6892 } $ and get the remainder
The remainder is still positive ($ 5767 > 0 $), so we will continue with division.
Step 7 :
Divide $ 6892 $ by $ \color{blue}{ 5767 } $ and get the remainder
The remainder is still positive ($ 1125 > 0 $), so we will continue with division.
Step 8 :
Divide $ 5767 $ by $ \color{blue}{ 1125 } $ and get the remainder
The remainder is still positive ($ 142 > 0 $), so we will continue with division.
Step 9 :
Divide $ 1125 $ by $ \color{blue}{ 142 } $ and get the remainder
The remainder is still positive ($ 131 > 0 $), so we will continue with division.
Step 10 :
Divide $ 142 $ by $ \color{blue}{ 131 } $ and get the remainder
The remainder is still positive ($ 11 > 0 $), so we will continue with division.
Step 11 :
Divide $ 131 $ by $ \color{blue}{ 11 } $ and get the remainder
The remainder is still positive ($ 10 > 0 $), so we will continue with division.
Step 12 :
Divide $ 11 $ by $ \color{blue}{ 10 } $ and get the remainder
The remainder is still positive ($ 1 > 0 $), so we will continue with division.
Step 13 :
Divide $ 10 $ by $ \color{blue}{ 1 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 1 }} $.
We can summarize an algorithm into a following table.
| 889079 | : | 798216 | = | 1 | remainder ( 90863 ) | ||||||||||||||||||||||||
| 798216 | : | 90863 | = | 8 | remainder ( 71312 ) | ||||||||||||||||||||||||
| 90863 | : | 71312 | = | 1 | remainder ( 19551 ) | ||||||||||||||||||||||||
| 71312 | : | 19551 | = | 3 | remainder ( 12659 ) | ||||||||||||||||||||||||
| 19551 | : | 12659 | = | 1 | remainder ( 6892 ) | ||||||||||||||||||||||||
| 12659 | : | 6892 | = | 1 | remainder ( 5767 ) | ||||||||||||||||||||||||
| 6892 | : | 5767 | = | 1 | remainder ( 1125 ) | ||||||||||||||||||||||||
| 5767 | : | 1125 | = | 5 | remainder ( 142 ) | ||||||||||||||||||||||||
| 1125 | : | 142 | = | 7 | remainder ( 131 ) | ||||||||||||||||||||||||
| 142 | : | 131 | = | 1 | remainder ( 11 ) | ||||||||||||||||||||||||
| 131 | : | 11 | = | 11 | remainder ( 10 ) | ||||||||||||||||||||||||
| 11 | : | 10 | = | 1 | remainder ( 1 ) | ||||||||||||||||||||||||
| 10 | : | 1 | = | 10 | remainder ( 0 ) | ||||||||||||||||||||||||
| GCD = 1 | |||||||||||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.