The GCD of given numbers is 631.
Step 1 :
Divide $ 889079 $ by $ 798215 $ and get the remainder
The remainder is positive ($ 90864 > 0 $), so we will continue with division.
Step 2 :
Divide $ 798215 $ by $ \color{blue}{ 90864 } $ and get the remainder
The remainder is still positive ($ 71303 > 0 $), so we will continue with division.
Step 3 :
Divide $ 90864 $ by $ \color{blue}{ 71303 } $ and get the remainder
The remainder is still positive ($ 19561 > 0 $), so we will continue with division.
Step 4 :
Divide $ 71303 $ by $ \color{blue}{ 19561 } $ and get the remainder
The remainder is still positive ($ 12620 > 0 $), so we will continue with division.
Step 5 :
Divide $ 19561 $ by $ \color{blue}{ 12620 } $ and get the remainder
The remainder is still positive ($ 6941 > 0 $), so we will continue with division.
Step 6 :
Divide $ 12620 $ by $ \color{blue}{ 6941 } $ and get the remainder
The remainder is still positive ($ 5679 > 0 $), so we will continue with division.
Step 7 :
Divide $ 6941 $ by $ \color{blue}{ 5679 } $ and get the remainder
The remainder is still positive ($ 1262 > 0 $), so we will continue with division.
Step 8 :
Divide $ 5679 $ by $ \color{blue}{ 1262 } $ and get the remainder
The remainder is still positive ($ 631 > 0 $), so we will continue with division.
Step 9 :
Divide $ 1262 $ by $ \color{blue}{ 631 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 631 }} $.
We can summarize an algorithm into a following table.
| 889079 | : | 798215 | = | 1 | remainder ( 90864 ) | ||||||||||||||||
| 798215 | : | 90864 | = | 8 | remainder ( 71303 ) | ||||||||||||||||
| 90864 | : | 71303 | = | 1 | remainder ( 19561 ) | ||||||||||||||||
| 71303 | : | 19561 | = | 3 | remainder ( 12620 ) | ||||||||||||||||
| 19561 | : | 12620 | = | 1 | remainder ( 6941 ) | ||||||||||||||||
| 12620 | : | 6941 | = | 1 | remainder ( 5679 ) | ||||||||||||||||
| 6941 | : | 5679 | = | 1 | remainder ( 1262 ) | ||||||||||||||||
| 5679 | : | 1262 | = | 4 | remainder ( 631 ) | ||||||||||||||||
| 1262 | : | 631 | = | 2 | remainder ( 0 ) | ||||||||||||||||
| GCD = 631 | |||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.