The GCD of given numbers is 137.
Step 1 :
Divide $ 83159 $ by $ 78912 $ and get the remainder
The remainder is positive ($ 4247 > 0 $), so we will continue with division.
Step 2 :
Divide $ 78912 $ by $ \color{blue}{ 4247 } $ and get the remainder
The remainder is still positive ($ 2466 > 0 $), so we will continue with division.
Step 3 :
Divide $ 4247 $ by $ \color{blue}{ 2466 } $ and get the remainder
The remainder is still positive ($ 1781 > 0 $), so we will continue with division.
Step 4 :
Divide $ 2466 $ by $ \color{blue}{ 1781 } $ and get the remainder
The remainder is still positive ($ 685 > 0 $), so we will continue with division.
Step 5 :
Divide $ 1781 $ by $ \color{blue}{ 685 } $ and get the remainder
The remainder is still positive ($ 411 > 0 $), so we will continue with division.
Step 6 :
Divide $ 685 $ by $ \color{blue}{ 411 } $ and get the remainder
The remainder is still positive ($ 274 > 0 $), so we will continue with division.
Step 7 :
Divide $ 411 $ by $ \color{blue}{ 274 } $ and get the remainder
The remainder is still positive ($ 137 > 0 $), so we will continue with division.
Step 8 :
Divide $ 274 $ by $ \color{blue}{ 137 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 137 }} $.
We can summarize an algorithm into a following table.
| 83159 | : | 78912 | = | 1 | remainder ( 4247 ) | ||||||||||||||
| 78912 | : | 4247 | = | 18 | remainder ( 2466 ) | ||||||||||||||
| 4247 | : | 2466 | = | 1 | remainder ( 1781 ) | ||||||||||||||
| 2466 | : | 1781 | = | 1 | remainder ( 685 ) | ||||||||||||||
| 1781 | : | 685 | = | 2 | remainder ( 411 ) | ||||||||||||||
| 685 | : | 411 | = | 1 | remainder ( 274 ) | ||||||||||||||
| 411 | : | 274 | = | 1 | remainder ( 137 ) | ||||||||||||||
| 274 | : | 137 | = | 2 | remainder ( 0 ) | ||||||||||||||
| GCD = 137 | |||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.