The GCD of given numbers is 66150.
Step 1 :
Divide $ 21829500 $ by $ 7871850 $ and get the remainder
The remainder is positive ($ 6085800 > 0 $), so we will continue with division.
Step 2 :
Divide $ 7871850 $ by $ \color{blue}{ 6085800 } $ and get the remainder
The remainder is still positive ($ 1786050 > 0 $), so we will continue with division.
Step 3 :
Divide $ 6085800 $ by $ \color{blue}{ 1786050 } $ and get the remainder
The remainder is still positive ($ 727650 > 0 $), so we will continue with division.
Step 4 :
Divide $ 1786050 $ by $ \color{blue}{ 727650 } $ and get the remainder
The remainder is still positive ($ 330750 > 0 $), so we will continue with division.
Step 5 :
Divide $ 727650 $ by $ \color{blue}{ 330750 } $ and get the remainder
The remainder is still positive ($ 66150 > 0 $), so we will continue with division.
Step 6 :
Divide $ 330750 $ by $ \color{blue}{ 66150 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 66150 }} $.
We can summarize an algorithm into a following table.
| 21829500 | : | 7871850 | = | 2 | remainder ( 6085800 ) | ||||||||||
| 7871850 | : | 6085800 | = | 1 | remainder ( 1786050 ) | ||||||||||
| 6085800 | : | 1786050 | = | 3 | remainder ( 727650 ) | ||||||||||
| 1786050 | : | 727650 | = | 2 | remainder ( 330750 ) | ||||||||||
| 727650 | : | 330750 | = | 2 | remainder ( 66150 ) | ||||||||||
| 330750 | : | 66150 | = | 5 | remainder ( 0 ) | ||||||||||
| GCD = 66150 | |||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.