The GCD of given numbers is 1.
Step 1 :
Divide $ 889079 $ by $ 773794 $ and get the remainder
The remainder is positive ($ 115285 > 0 $), so we will continue with division.
Step 2 :
Divide $ 773794 $ by $ \color{blue}{ 115285 } $ and get the remainder
The remainder is still positive ($ 82084 > 0 $), so we will continue with division.
Step 3 :
Divide $ 115285 $ by $ \color{blue}{ 82084 } $ and get the remainder
The remainder is still positive ($ 33201 > 0 $), so we will continue with division.
Step 4 :
Divide $ 82084 $ by $ \color{blue}{ 33201 } $ and get the remainder
The remainder is still positive ($ 15682 > 0 $), so we will continue with division.
Step 5 :
Divide $ 33201 $ by $ \color{blue}{ 15682 } $ and get the remainder
The remainder is still positive ($ 1837 > 0 $), so we will continue with division.
Step 6 :
Divide $ 15682 $ by $ \color{blue}{ 1837 } $ and get the remainder
The remainder is still positive ($ 986 > 0 $), so we will continue with division.
Step 7 :
Divide $ 1837 $ by $ \color{blue}{ 986 } $ and get the remainder
The remainder is still positive ($ 851 > 0 $), so we will continue with division.
Step 8 :
Divide $ 986 $ by $ \color{blue}{ 851 } $ and get the remainder
The remainder is still positive ($ 135 > 0 $), so we will continue with division.
Step 9 :
Divide $ 851 $ by $ \color{blue}{ 135 } $ and get the remainder
The remainder is still positive ($ 41 > 0 $), so we will continue with division.
Step 10 :
Divide $ 135 $ by $ \color{blue}{ 41 } $ and get the remainder
The remainder is still positive ($ 12 > 0 $), so we will continue with division.
Step 11 :
Divide $ 41 $ by $ \color{blue}{ 12 } $ and get the remainder
The remainder is still positive ($ 5 > 0 $), so we will continue with division.
Step 12 :
Divide $ 12 $ by $ \color{blue}{ 5 } $ and get the remainder
The remainder is still positive ($ 2 > 0 $), so we will continue with division.
Step 13 :
Divide $ 5 $ by $ \color{blue}{ 2 } $ and get the remainder
The remainder is still positive ($ 1 > 0 $), so we will continue with division.
Step 14 :
Divide $ 2 $ by $ \color{blue}{ 1 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 1 }} $.
We can summarize an algorithm into a following table.
| 889079 | : | 773794 | = | 1 | remainder ( 115285 ) | ||||||||||||||||||||||||||
| 773794 | : | 115285 | = | 6 | remainder ( 82084 ) | ||||||||||||||||||||||||||
| 115285 | : | 82084 | = | 1 | remainder ( 33201 ) | ||||||||||||||||||||||||||
| 82084 | : | 33201 | = | 2 | remainder ( 15682 ) | ||||||||||||||||||||||||||
| 33201 | : | 15682 | = | 2 | remainder ( 1837 ) | ||||||||||||||||||||||||||
| 15682 | : | 1837 | = | 8 | remainder ( 986 ) | ||||||||||||||||||||||||||
| 1837 | : | 986 | = | 1 | remainder ( 851 ) | ||||||||||||||||||||||||||
| 986 | : | 851 | = | 1 | remainder ( 135 ) | ||||||||||||||||||||||||||
| 851 | : | 135 | = | 6 | remainder ( 41 ) | ||||||||||||||||||||||||||
| 135 | : | 41 | = | 3 | remainder ( 12 ) | ||||||||||||||||||||||||||
| 41 | : | 12 | = | 3 | remainder ( 5 ) | ||||||||||||||||||||||||||
| 12 | : | 5 | = | 2 | remainder ( 2 ) | ||||||||||||||||||||||||||
| 5 | : | 2 | = | 2 | remainder ( 1 ) | ||||||||||||||||||||||||||
| 2 | : | 1 | = | 2 | remainder ( 0 ) | ||||||||||||||||||||||||||
| GCD = 1 | |||||||||||||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.