The GCD of given numbers is 1.
Step 1 :
Divide $ 11155 $ by $ 6897 $ and get the remainder
The remainder is positive ($ 4258 > 0 $), so we will continue with division.
Step 2 :
Divide $ 6897 $ by $ \color{blue}{ 4258 } $ and get the remainder
The remainder is still positive ($ 2639 > 0 $), so we will continue with division.
Step 3 :
Divide $ 4258 $ by $ \color{blue}{ 2639 } $ and get the remainder
The remainder is still positive ($ 1619 > 0 $), so we will continue with division.
Step 4 :
Divide $ 2639 $ by $ \color{blue}{ 1619 } $ and get the remainder
The remainder is still positive ($ 1020 > 0 $), so we will continue with division.
Step 5 :
Divide $ 1619 $ by $ \color{blue}{ 1020 } $ and get the remainder
The remainder is still positive ($ 599 > 0 $), so we will continue with division.
Step 6 :
Divide $ 1020 $ by $ \color{blue}{ 599 } $ and get the remainder
The remainder is still positive ($ 421 > 0 $), so we will continue with division.
Step 7 :
Divide $ 599 $ by $ \color{blue}{ 421 } $ and get the remainder
The remainder is still positive ($ 178 > 0 $), so we will continue with division.
Step 8 :
Divide $ 421 $ by $ \color{blue}{ 178 } $ and get the remainder
The remainder is still positive ($ 65 > 0 $), so we will continue with division.
Step 9 :
Divide $ 178 $ by $ \color{blue}{ 65 } $ and get the remainder
The remainder is still positive ($ 48 > 0 $), so we will continue with division.
Step 10 :
Divide $ 65 $ by $ \color{blue}{ 48 } $ and get the remainder
The remainder is still positive ($ 17 > 0 $), so we will continue with division.
Step 11 :
Divide $ 48 $ by $ \color{blue}{ 17 } $ and get the remainder
The remainder is still positive ($ 14 > 0 $), so we will continue with division.
Step 12 :
Divide $ 17 $ by $ \color{blue}{ 14 } $ and get the remainder
The remainder is still positive ($ 3 > 0 $), so we will continue with division.
Step 13 :
Divide $ 14 $ by $ \color{blue}{ 3 } $ and get the remainder
The remainder is still positive ($ 2 > 0 $), so we will continue with division.
Step 14 :
Divide $ 3 $ by $ \color{blue}{ 2 } $ and get the remainder
The remainder is still positive ($ 1 > 0 $), so we will continue with division.
Step 15 :
Divide $ 2 $ by $ \color{blue}{ 1 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 1 }} $.
We can summarize an algorithm into a following table.
| 11155 | : | 6897 | = | 1 | remainder ( 4258 ) | ||||||||||||||||||||||||||||
| 6897 | : | 4258 | = | 1 | remainder ( 2639 ) | ||||||||||||||||||||||||||||
| 4258 | : | 2639 | = | 1 | remainder ( 1619 ) | ||||||||||||||||||||||||||||
| 2639 | : | 1619 | = | 1 | remainder ( 1020 ) | ||||||||||||||||||||||||||||
| 1619 | : | 1020 | = | 1 | remainder ( 599 ) | ||||||||||||||||||||||||||||
| 1020 | : | 599 | = | 1 | remainder ( 421 ) | ||||||||||||||||||||||||||||
| 599 | : | 421 | = | 1 | remainder ( 178 ) | ||||||||||||||||||||||||||||
| 421 | : | 178 | = | 2 | remainder ( 65 ) | ||||||||||||||||||||||||||||
| 178 | : | 65 | = | 2 | remainder ( 48 ) | ||||||||||||||||||||||||||||
| 65 | : | 48 | = | 1 | remainder ( 17 ) | ||||||||||||||||||||||||||||
| 48 | : | 17 | = | 2 | remainder ( 14 ) | ||||||||||||||||||||||||||||
| 17 | : | 14 | = | 1 | remainder ( 3 ) | ||||||||||||||||||||||||||||
| 14 | : | 3 | = | 4 | remainder ( 2 ) | ||||||||||||||||||||||||||||
| 3 | : | 2 | = | 1 | remainder ( 1 ) | ||||||||||||||||||||||||||||
| 2 | : | 1 | = | 2 | remainder ( 0 ) | ||||||||||||||||||||||||||||
| GCD = 1 | |||||||||||||||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.