The GCD of given numbers is 1.
Step 1 :
Divide $ 3962 $ by $ 1859 $ and get the remainder
The remainder is positive ($ 244 > 0 $), so we will continue with division.
Step 2 :
Divide $ 1859 $ by $ \color{blue}{ 244 } $ and get the remainder
The remainder is still positive ($ 151 > 0 $), so we will continue with division.
Step 3 :
Divide $ 244 $ by $ \color{blue}{ 151 } $ and get the remainder
The remainder is still positive ($ 93 > 0 $), so we will continue with division.
Step 4 :
Divide $ 151 $ by $ \color{blue}{ 93 } $ and get the remainder
The remainder is still positive ($ 58 > 0 $), so we will continue with division.
Step 5 :
Divide $ 93 $ by $ \color{blue}{ 58 } $ and get the remainder
The remainder is still positive ($ 35 > 0 $), so we will continue with division.
Step 6 :
Divide $ 58 $ by $ \color{blue}{ 35 } $ and get the remainder
The remainder is still positive ($ 23 > 0 $), so we will continue with division.
Step 7 :
Divide $ 35 $ by $ \color{blue}{ 23 } $ and get the remainder
The remainder is still positive ($ 12 > 0 $), so we will continue with division.
Step 8 :
Divide $ 23 $ by $ \color{blue}{ 12 } $ and get the remainder
The remainder is still positive ($ 11 > 0 $), so we will continue with division.
Step 9 :
Divide $ 12 $ by $ \color{blue}{ 11 } $ and get the remainder
The remainder is still positive ($ 1 > 0 $), so we will continue with division.
Step 10 :
Divide $ 11 $ by $ \color{blue}{ 1 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 1 }} $.
We can summarize an algorithm into a following table.
| 3962 | : | 1859 | = | 2 | remainder ( 244 ) | ||||||||||||||||||
| 1859 | : | 244 | = | 7 | remainder ( 151 ) | ||||||||||||||||||
| 244 | : | 151 | = | 1 | remainder ( 93 ) | ||||||||||||||||||
| 151 | : | 93 | = | 1 | remainder ( 58 ) | ||||||||||||||||||
| 93 | : | 58 | = | 1 | remainder ( 35 ) | ||||||||||||||||||
| 58 | : | 35 | = | 1 | remainder ( 23 ) | ||||||||||||||||||
| 35 | : | 23 | = | 1 | remainder ( 12 ) | ||||||||||||||||||
| 23 | : | 12 | = | 1 | remainder ( 11 ) | ||||||||||||||||||
| 12 | : | 11 | = | 1 | remainder ( 1 ) | ||||||||||||||||||
| 11 | : | 1 | = | 11 | remainder ( 0 ) | ||||||||||||||||||
| GCD = 1 | |||||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.