The GCD of given numbers is 1.
Step 1 :
Divide $ 2025 $ by $ 1588 $ and get the remainder
The remainder is positive ($ 437 > 0 $), so we will continue with division.
Step 2 :
Divide $ 1588 $ by $ \color{blue}{ 437 } $ and get the remainder
The remainder is still positive ($ 277 > 0 $), so we will continue with division.
Step 3 :
Divide $ 437 $ by $ \color{blue}{ 277 } $ and get the remainder
The remainder is still positive ($ 160 > 0 $), so we will continue with division.
Step 4 :
Divide $ 277 $ by $ \color{blue}{ 160 } $ and get the remainder
The remainder is still positive ($ 117 > 0 $), so we will continue with division.
Step 5 :
Divide $ 160 $ by $ \color{blue}{ 117 } $ and get the remainder
The remainder is still positive ($ 43 > 0 $), so we will continue with division.
Step 6 :
Divide $ 117 $ by $ \color{blue}{ 43 } $ and get the remainder
The remainder is still positive ($ 31 > 0 $), so we will continue with division.
Step 7 :
Divide $ 43 $ by $ \color{blue}{ 31 } $ and get the remainder
The remainder is still positive ($ 12 > 0 $), so we will continue with division.
Step 8 :
Divide $ 31 $ by $ \color{blue}{ 12 } $ and get the remainder
The remainder is still positive ($ 7 > 0 $), so we will continue with division.
Step 9 :
Divide $ 12 $ by $ \color{blue}{ 7 } $ and get the remainder
The remainder is still positive ($ 5 > 0 $), so we will continue with division.
Step 10 :
Divide $ 7 $ by $ \color{blue}{ 5 } $ and get the remainder
The remainder is still positive ($ 2 > 0 $), so we will continue with division.
Step 11 :
Divide $ 5 $ by $ \color{blue}{ 2 } $ and get the remainder
The remainder is still positive ($ 1 > 0 $), so we will continue with division.
Step 12 :
Divide $ 2 $ by $ \color{blue}{ 1 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 1 }} $.
We can summarize an algorithm into a following table.
| 2025 | : | 1588 | = | 1 | remainder ( 437 ) | ||||||||||||||||||||||
| 1588 | : | 437 | = | 3 | remainder ( 277 ) | ||||||||||||||||||||||
| 437 | : | 277 | = | 1 | remainder ( 160 ) | ||||||||||||||||||||||
| 277 | : | 160 | = | 1 | remainder ( 117 ) | ||||||||||||||||||||||
| 160 | : | 117 | = | 1 | remainder ( 43 ) | ||||||||||||||||||||||
| 117 | : | 43 | = | 2 | remainder ( 31 ) | ||||||||||||||||||||||
| 43 | : | 31 | = | 1 | remainder ( 12 ) | ||||||||||||||||||||||
| 31 | : | 12 | = | 2 | remainder ( 7 ) | ||||||||||||||||||||||
| 12 | : | 7 | = | 1 | remainder ( 5 ) | ||||||||||||||||||||||
| 7 | : | 5 | = | 1 | remainder ( 2 ) | ||||||||||||||||||||||
| 5 | : | 2 | = | 2 | remainder ( 1 ) | ||||||||||||||||||||||
| 2 | : | 1 | = | 2 | remainder ( 0 ) | ||||||||||||||||||||||
| GCD = 1 | |||||||||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.