The GCD of given numbers is 1.
Step 1 :
Divide $ 2025 $ by $ 1286 $ and get the remainder
The remainder is positive ($ 739 > 0 $), so we will continue with division.
Step 2 :
Divide $ 1286 $ by $ \color{blue}{ 739 } $ and get the remainder
The remainder is still positive ($ 547 > 0 $), so we will continue with division.
Step 3 :
Divide $ 739 $ by $ \color{blue}{ 547 } $ and get the remainder
The remainder is still positive ($ 192 > 0 $), so we will continue with division.
Step 4 :
Divide $ 547 $ by $ \color{blue}{ 192 } $ and get the remainder
The remainder is still positive ($ 163 > 0 $), so we will continue with division.
Step 5 :
Divide $ 192 $ by $ \color{blue}{ 163 } $ and get the remainder
The remainder is still positive ($ 29 > 0 $), so we will continue with division.
Step 6 :
Divide $ 163 $ by $ \color{blue}{ 29 } $ and get the remainder
The remainder is still positive ($ 18 > 0 $), so we will continue with division.
Step 7 :
Divide $ 29 $ by $ \color{blue}{ 18 } $ and get the remainder
The remainder is still positive ($ 11 > 0 $), so we will continue with division.
Step 8 :
Divide $ 18 $ by $ \color{blue}{ 11 } $ and get the remainder
The remainder is still positive ($ 7 > 0 $), so we will continue with division.
Step 9 :
Divide $ 11 $ by $ \color{blue}{ 7 } $ and get the remainder
The remainder is still positive ($ 4 > 0 $), so we will continue with division.
Step 10 :
Divide $ 7 $ by $ \color{blue}{ 4 } $ and get the remainder
The remainder is still positive ($ 3 > 0 $), so we will continue with division.
Step 11 :
Divide $ 4 $ by $ \color{blue}{ 3 } $ and get the remainder
The remainder is still positive ($ 1 > 0 $), so we will continue with division.
Step 12 :
Divide $ 3 $ by $ \color{blue}{ 1 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 1 }} $.
We can summarize an algorithm into a following table.
| 2025 | : | 1286 | = | 1 | remainder ( 739 ) | ||||||||||||||||||||||
| 1286 | : | 739 | = | 1 | remainder ( 547 ) | ||||||||||||||||||||||
| 739 | : | 547 | = | 1 | remainder ( 192 ) | ||||||||||||||||||||||
| 547 | : | 192 | = | 2 | remainder ( 163 ) | ||||||||||||||||||||||
| 192 | : | 163 | = | 1 | remainder ( 29 ) | ||||||||||||||||||||||
| 163 | : | 29 | = | 5 | remainder ( 18 ) | ||||||||||||||||||||||
| 29 | : | 18 | = | 1 | remainder ( 11 ) | ||||||||||||||||||||||
| 18 | : | 11 | = | 1 | remainder ( 7 ) | ||||||||||||||||||||||
| 11 | : | 7 | = | 1 | remainder ( 4 ) | ||||||||||||||||||||||
| 7 | : | 4 | = | 1 | remainder ( 3 ) | ||||||||||||||||||||||
| 4 | : | 3 | = | 1 | remainder ( 1 ) | ||||||||||||||||||||||
| 3 | : | 1 | = | 3 | remainder ( 0 ) | ||||||||||||||||||||||
| GCD = 1 | |||||||||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.