The GCD of given numbers is 1.
Step 1 :
Divide $ 3201 $ by $ 2020 $ and get the remainder
The remainder is positive ($ 1181 > 0 $), so we will continue with division.
Step 2 :
Divide $ 2020 $ by $ \color{blue}{ 1181 } $ and get the remainder
The remainder is still positive ($ 839 > 0 $), so we will continue with division.
Step 3 :
Divide $ 1181 $ by $ \color{blue}{ 839 } $ and get the remainder
The remainder is still positive ($ 342 > 0 $), so we will continue with division.
Step 4 :
Divide $ 839 $ by $ \color{blue}{ 342 } $ and get the remainder
The remainder is still positive ($ 155 > 0 $), so we will continue with division.
Step 5 :
Divide $ 342 $ by $ \color{blue}{ 155 } $ and get the remainder
The remainder is still positive ($ 32 > 0 $), so we will continue with division.
Step 6 :
Divide $ 155 $ by $ \color{blue}{ 32 } $ and get the remainder
The remainder is still positive ($ 27 > 0 $), so we will continue with division.
Step 7 :
Divide $ 32 $ by $ \color{blue}{ 27 } $ and get the remainder
The remainder is still positive ($ 5 > 0 $), so we will continue with division.
Step 8 :
Divide $ 27 $ by $ \color{blue}{ 5 } $ and get the remainder
The remainder is still positive ($ 2 > 0 $), so we will continue with division.
Step 9 :
Divide $ 5 $ by $ \color{blue}{ 2 } $ and get the remainder
The remainder is still positive ($ 1 > 0 $), so we will continue with division.
Step 10 :
Divide $ 2 $ by $ \color{blue}{ 1 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 1 }} $.
We can summarize an algorithm into a following table.
| 3201 | : | 2020 | = | 1 | remainder ( 1181 ) | ||||||||||||||||||
| 2020 | : | 1181 | = | 1 | remainder ( 839 ) | ||||||||||||||||||
| 1181 | : | 839 | = | 1 | remainder ( 342 ) | ||||||||||||||||||
| 839 | : | 342 | = | 2 | remainder ( 155 ) | ||||||||||||||||||
| 342 | : | 155 | = | 2 | remainder ( 32 ) | ||||||||||||||||||
| 155 | : | 32 | = | 4 | remainder ( 27 ) | ||||||||||||||||||
| 32 | : | 27 | = | 1 | remainder ( 5 ) | ||||||||||||||||||
| 27 | : | 5 | = | 5 | remainder ( 2 ) | ||||||||||||||||||
| 5 | : | 2 | = | 2 | remainder ( 1 ) | ||||||||||||||||||
| 2 | : | 1 | = | 2 | remainder ( 0 ) | ||||||||||||||||||
| GCD = 1 | |||||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.