The GCD of given numbers is 10.
Step 1 :
Divide $ 18230 $ by $ 13230 $ and get the remainder
The remainder is positive ($ 5000 > 0 $), so we will continue with division.
Step 2 :
Divide $ 13230 $ by $ \color{blue}{ 5000 } $ and get the remainder
The remainder is still positive ($ 3230 > 0 $), so we will continue with division.
Step 3 :
Divide $ 5000 $ by $ \color{blue}{ 3230 } $ and get the remainder
The remainder is still positive ($ 1770 > 0 $), so we will continue with division.
Step 4 :
Divide $ 3230 $ by $ \color{blue}{ 1770 } $ and get the remainder
The remainder is still positive ($ 1460 > 0 $), so we will continue with division.
Step 5 :
Divide $ 1770 $ by $ \color{blue}{ 1460 } $ and get the remainder
The remainder is still positive ($ 310 > 0 $), so we will continue with division.
Step 6 :
Divide $ 1460 $ by $ \color{blue}{ 310 } $ and get the remainder
The remainder is still positive ($ 220 > 0 $), so we will continue with division.
Step 7 :
Divide $ 310 $ by $ \color{blue}{ 220 } $ and get the remainder
The remainder is still positive ($ 90 > 0 $), so we will continue with division.
Step 8 :
Divide $ 220 $ by $ \color{blue}{ 90 } $ and get the remainder
The remainder is still positive ($ 40 > 0 $), so we will continue with division.
Step 9 :
Divide $ 90 $ by $ \color{blue}{ 40 } $ and get the remainder
The remainder is still positive ($ 10 > 0 $), so we will continue with division.
Step 10 :
Divide $ 40 $ by $ \color{blue}{ 10 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 10 }} $.
We can summarize an algorithm into a following table.
| 18230 | : | 13230 | = | 1 | remainder ( 5000 ) | ||||||||||||||||||
| 13230 | : | 5000 | = | 2 | remainder ( 3230 ) | ||||||||||||||||||
| 5000 | : | 3230 | = | 1 | remainder ( 1770 ) | ||||||||||||||||||
| 3230 | : | 1770 | = | 1 | remainder ( 1460 ) | ||||||||||||||||||
| 1770 | : | 1460 | = | 1 | remainder ( 310 ) | ||||||||||||||||||
| 1460 | : | 310 | = | 4 | remainder ( 220 ) | ||||||||||||||||||
| 310 | : | 220 | = | 1 | remainder ( 90 ) | ||||||||||||||||||
| 220 | : | 90 | = | 2 | remainder ( 40 ) | ||||||||||||||||||
| 90 | : | 40 | = | 2 | remainder ( 10 ) | ||||||||||||||||||
| 40 | : | 10 | = | 4 | remainder ( 0 ) | ||||||||||||||||||
| GCD = 10 | |||||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.