The GCD of given numbers is 10.
Step 1 :
Divide $ 18090 $ by $ 13090 $ and get the remainder
The remainder is positive ($ 5000 > 0 $), so we will continue with division.
Step 2 :
Divide $ 13090 $ by $ \color{blue}{ 5000 } $ and get the remainder
The remainder is still positive ($ 3090 > 0 $), so we will continue with division.
Step 3 :
Divide $ 5000 $ by $ \color{blue}{ 3090 } $ and get the remainder
The remainder is still positive ($ 1910 > 0 $), so we will continue with division.
Step 4 :
Divide $ 3090 $ by $ \color{blue}{ 1910 } $ and get the remainder
The remainder is still positive ($ 1180 > 0 $), so we will continue with division.
Step 5 :
Divide $ 1910 $ by $ \color{blue}{ 1180 } $ and get the remainder
The remainder is still positive ($ 730 > 0 $), so we will continue with division.
Step 6 :
Divide $ 1180 $ by $ \color{blue}{ 730 } $ and get the remainder
The remainder is still positive ($ 450 > 0 $), so we will continue with division.
Step 7 :
Divide $ 730 $ by $ \color{blue}{ 450 } $ and get the remainder
The remainder is still positive ($ 280 > 0 $), so we will continue with division.
Step 8 :
Divide $ 450 $ by $ \color{blue}{ 280 } $ and get the remainder
The remainder is still positive ($ 170 > 0 $), so we will continue with division.
Step 9 :
Divide $ 280 $ by $ \color{blue}{ 170 } $ and get the remainder
The remainder is still positive ($ 110 > 0 $), so we will continue with division.
Step 10 :
Divide $ 170 $ by $ \color{blue}{ 110 } $ and get the remainder
The remainder is still positive ($ 60 > 0 $), so we will continue with division.
Step 11 :
Divide $ 110 $ by $ \color{blue}{ 60 } $ and get the remainder
The remainder is still positive ($ 50 > 0 $), so we will continue with division.
Step 12 :
Divide $ 60 $ by $ \color{blue}{ 50 } $ and get the remainder
The remainder is still positive ($ 10 > 0 $), so we will continue with division.
Step 13 :
Divide $ 50 $ by $ \color{blue}{ 10 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 10 }} $.
We can summarize an algorithm into a following table.
| 18090 | : | 13090 | = | 1 | remainder ( 5000 ) | ||||||||||||||||||||||||
| 13090 | : | 5000 | = | 2 | remainder ( 3090 ) | ||||||||||||||||||||||||
| 5000 | : | 3090 | = | 1 | remainder ( 1910 ) | ||||||||||||||||||||||||
| 3090 | : | 1910 | = | 1 | remainder ( 1180 ) | ||||||||||||||||||||||||
| 1910 | : | 1180 | = | 1 | remainder ( 730 ) | ||||||||||||||||||||||||
| 1180 | : | 730 | = | 1 | remainder ( 450 ) | ||||||||||||||||||||||||
| 730 | : | 450 | = | 1 | remainder ( 280 ) | ||||||||||||||||||||||||
| 450 | : | 280 | = | 1 | remainder ( 170 ) | ||||||||||||||||||||||||
| 280 | : | 170 | = | 1 | remainder ( 110 ) | ||||||||||||||||||||||||
| 170 | : | 110 | = | 1 | remainder ( 60 ) | ||||||||||||||||||||||||
| 110 | : | 60 | = | 1 | remainder ( 50 ) | ||||||||||||||||||||||||
| 60 | : | 50 | = | 1 | remainder ( 10 ) | ||||||||||||||||||||||||
| 50 | : | 10 | = | 5 | remainder ( 0 ) | ||||||||||||||||||||||||
| GCD = 10 | |||||||||||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.