The GCD of given numbers is 50.
Step 1 :
Divide $ 17950 $ by $ 12950 $ and get the remainder
The remainder is positive ($ 5000 > 0 $), so we will continue with division.
Step 2 :
Divide $ 12950 $ by $ \color{blue}{ 5000 } $ and get the remainder
The remainder is still positive ($ 2950 > 0 $), so we will continue with division.
Step 3 :
Divide $ 5000 $ by $ \color{blue}{ 2950 } $ and get the remainder
The remainder is still positive ($ 2050 > 0 $), so we will continue with division.
Step 4 :
Divide $ 2950 $ by $ \color{blue}{ 2050 } $ and get the remainder
The remainder is still positive ($ 900 > 0 $), so we will continue with division.
Step 5 :
Divide $ 2050 $ by $ \color{blue}{ 900 } $ and get the remainder
The remainder is still positive ($ 250 > 0 $), so we will continue with division.
Step 6 :
Divide $ 900 $ by $ \color{blue}{ 250 } $ and get the remainder
The remainder is still positive ($ 150 > 0 $), so we will continue with division.
Step 7 :
Divide $ 250 $ by $ \color{blue}{ 150 } $ and get the remainder
The remainder is still positive ($ 100 > 0 $), so we will continue with division.
Step 8 :
Divide $ 150 $ by $ \color{blue}{ 100 } $ and get the remainder
The remainder is still positive ($ 50 > 0 $), so we will continue with division.
Step 9 :
Divide $ 100 $ by $ \color{blue}{ 50 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 50 }} $.
We can summarize an algorithm into a following table.
| 17950 | : | 12950 | = | 1 | remainder ( 5000 ) | ||||||||||||||||
| 12950 | : | 5000 | = | 2 | remainder ( 2950 ) | ||||||||||||||||
| 5000 | : | 2950 | = | 1 | remainder ( 2050 ) | ||||||||||||||||
| 2950 | : | 2050 | = | 1 | remainder ( 900 ) | ||||||||||||||||
| 2050 | : | 900 | = | 2 | remainder ( 250 ) | ||||||||||||||||
| 900 | : | 250 | = | 3 | remainder ( 150 ) | ||||||||||||||||
| 250 | : | 150 | = | 1 | remainder ( 100 ) | ||||||||||||||||
| 150 | : | 100 | = | 1 | remainder ( 50 ) | ||||||||||||||||
| 100 | : | 50 | = | 2 | remainder ( 0 ) | ||||||||||||||||
| GCD = 50 | |||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.