The GCD of given numbers is 10.
Step 1 :
Divide $ 17790 $ by $ 12790 $ and get the remainder
The remainder is positive ($ 5000 > 0 $), so we will continue with division.
Step 2 :
Divide $ 12790 $ by $ \color{blue}{ 5000 } $ and get the remainder
The remainder is still positive ($ 2790 > 0 $), so we will continue with division.
Step 3 :
Divide $ 5000 $ by $ \color{blue}{ 2790 } $ and get the remainder
The remainder is still positive ($ 2210 > 0 $), so we will continue with division.
Step 4 :
Divide $ 2790 $ by $ \color{blue}{ 2210 } $ and get the remainder
The remainder is still positive ($ 580 > 0 $), so we will continue with division.
Step 5 :
Divide $ 2210 $ by $ \color{blue}{ 580 } $ and get the remainder
The remainder is still positive ($ 470 > 0 $), so we will continue with division.
Step 6 :
Divide $ 580 $ by $ \color{blue}{ 470 } $ and get the remainder
The remainder is still positive ($ 110 > 0 $), so we will continue with division.
Step 7 :
Divide $ 470 $ by $ \color{blue}{ 110 } $ and get the remainder
The remainder is still positive ($ 30 > 0 $), so we will continue with division.
Step 8 :
Divide $ 110 $ by $ \color{blue}{ 30 } $ and get the remainder
The remainder is still positive ($ 20 > 0 $), so we will continue with division.
Step 9 :
Divide $ 30 $ by $ \color{blue}{ 20 } $ and get the remainder
The remainder is still positive ($ 10 > 0 $), so we will continue with division.
Step 10 :
Divide $ 20 $ by $ \color{blue}{ 10 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 10 }} $.
We can summarize an algorithm into a following table.
| 17790 | : | 12790 | = | 1 | remainder ( 5000 ) | ||||||||||||||||||
| 12790 | : | 5000 | = | 2 | remainder ( 2790 ) | ||||||||||||||||||
| 5000 | : | 2790 | = | 1 | remainder ( 2210 ) | ||||||||||||||||||
| 2790 | : | 2210 | = | 1 | remainder ( 580 ) | ||||||||||||||||||
| 2210 | : | 580 | = | 3 | remainder ( 470 ) | ||||||||||||||||||
| 580 | : | 470 | = | 1 | remainder ( 110 ) | ||||||||||||||||||
| 470 | : | 110 | = | 4 | remainder ( 30 ) | ||||||||||||||||||
| 110 | : | 30 | = | 3 | remainder ( 20 ) | ||||||||||||||||||
| 30 | : | 20 | = | 1 | remainder ( 10 ) | ||||||||||||||||||
| 20 | : | 10 | = | 2 | remainder ( 0 ) | ||||||||||||||||||
| GCD = 10 | |||||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.