The GCD of given numbers is 10.
Step 1 :
Divide $ 17570 $ by $ 12750 $ and get the remainder
The remainder is positive ($ 4820 > 0 $), so we will continue with division.
Step 2 :
Divide $ 12750 $ by $ \color{blue}{ 4820 } $ and get the remainder
The remainder is still positive ($ 3110 > 0 $), so we will continue with division.
Step 3 :
Divide $ 4820 $ by $ \color{blue}{ 3110 } $ and get the remainder
The remainder is still positive ($ 1710 > 0 $), so we will continue with division.
Step 4 :
Divide $ 3110 $ by $ \color{blue}{ 1710 } $ and get the remainder
The remainder is still positive ($ 1400 > 0 $), so we will continue with division.
Step 5 :
Divide $ 1710 $ by $ \color{blue}{ 1400 } $ and get the remainder
The remainder is still positive ($ 310 > 0 $), so we will continue with division.
Step 6 :
Divide $ 1400 $ by $ \color{blue}{ 310 } $ and get the remainder
The remainder is still positive ($ 160 > 0 $), so we will continue with division.
Step 7 :
Divide $ 310 $ by $ \color{blue}{ 160 } $ and get the remainder
The remainder is still positive ($ 150 > 0 $), so we will continue with division.
Step 8 :
Divide $ 160 $ by $ \color{blue}{ 150 } $ and get the remainder
The remainder is still positive ($ 10 > 0 $), so we will continue with division.
Step 9 :
Divide $ 150 $ by $ \color{blue}{ 10 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 10 }} $.
We can summarize an algorithm into a following table.
| 17570 | : | 12750 | = | 1 | remainder ( 4820 ) | ||||||||||||||||
| 12750 | : | 4820 | = | 2 | remainder ( 3110 ) | ||||||||||||||||
| 4820 | : | 3110 | = | 1 | remainder ( 1710 ) | ||||||||||||||||
| 3110 | : | 1710 | = | 1 | remainder ( 1400 ) | ||||||||||||||||
| 1710 | : | 1400 | = | 1 | remainder ( 310 ) | ||||||||||||||||
| 1400 | : | 310 | = | 4 | remainder ( 160 ) | ||||||||||||||||
| 310 | : | 160 | = | 1 | remainder ( 150 ) | ||||||||||||||||
| 160 | : | 150 | = | 1 | remainder ( 10 ) | ||||||||||||||||
| 150 | : | 10 | = | 15 | remainder ( 0 ) | ||||||||||||||||
| GCD = 10 | |||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.