The GCD of given numbers is 377.
Step 1 :
Divide $ 1664972998 $ by $ 1107550223 $ and get the remainder
The remainder is positive ($ 557422775 > 0 $), so we will continue with division.
Step 2 :
Divide $ 1107550223 $ by $ \color{blue}{ 557422775 } $ and get the remainder
The remainder is still positive ($ 550127448 > 0 $), so we will continue with division.
Step 3 :
Divide $ 557422775 $ by $ \color{blue}{ 550127448 } $ and get the remainder
The remainder is still positive ($ 7295327 > 0 $), so we will continue with division.
Step 4 :
Divide $ 550127448 $ by $ \color{blue}{ 7295327 } $ and get the remainder
The remainder is still positive ($ 2977923 > 0 $), so we will continue with division.
Step 5 :
Divide $ 7295327 $ by $ \color{blue}{ 2977923 } $ and get the remainder
The remainder is still positive ($ 1339481 > 0 $), so we will continue with division.
Step 6 :
Divide $ 2977923 $ by $ \color{blue}{ 1339481 } $ and get the remainder
The remainder is still positive ($ 298961 > 0 $), so we will continue with division.
Step 7 :
Divide $ 1339481 $ by $ \color{blue}{ 298961 } $ and get the remainder
The remainder is still positive ($ 143637 > 0 $), so we will continue with division.
Step 8 :
Divide $ 298961 $ by $ \color{blue}{ 143637 } $ and get the remainder
The remainder is still positive ($ 11687 > 0 $), so we will continue with division.
Step 9 :
Divide $ 143637 $ by $ \color{blue}{ 11687 } $ and get the remainder
The remainder is still positive ($ 3393 > 0 $), so we will continue with division.
Step 10 :
Divide $ 11687 $ by $ \color{blue}{ 3393 } $ and get the remainder
The remainder is still positive ($ 1508 > 0 $), so we will continue with division.
Step 11 :
Divide $ 3393 $ by $ \color{blue}{ 1508 } $ and get the remainder
The remainder is still positive ($ 377 > 0 $), so we will continue with division.
Step 12 :
Divide $ 1508 $ by $ \color{blue}{ 377 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 377 }} $.
We can summarize an algorithm into a following table.
| 1664972998 | : | 1107550223 | = | 1 | remainder ( 557422775 ) | ||||||||||||||||||||||
| 1107550223 | : | 557422775 | = | 1 | remainder ( 550127448 ) | ||||||||||||||||||||||
| 557422775 | : | 550127448 | = | 1 | remainder ( 7295327 ) | ||||||||||||||||||||||
| 550127448 | : | 7295327 | = | 75 | remainder ( 2977923 ) | ||||||||||||||||||||||
| 7295327 | : | 2977923 | = | 2 | remainder ( 1339481 ) | ||||||||||||||||||||||
| 2977923 | : | 1339481 | = | 2 | remainder ( 298961 ) | ||||||||||||||||||||||
| 1339481 | : | 298961 | = | 4 | remainder ( 143637 ) | ||||||||||||||||||||||
| 298961 | : | 143637 | = | 2 | remainder ( 11687 ) | ||||||||||||||||||||||
| 143637 | : | 11687 | = | 12 | remainder ( 3393 ) | ||||||||||||||||||||||
| 11687 | : | 3393 | = | 3 | remainder ( 1508 ) | ||||||||||||||||||||||
| 3393 | : | 1508 | = | 2 | remainder ( 377 ) | ||||||||||||||||||||||
| 1508 | : | 377 | = | 4 | remainder ( 0 ) | ||||||||||||||||||||||
| GCD = 377 | |||||||||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.