The GCD of given numbers is 10.
Step 1 :
Divide $ 16370 $ by $ 11370 $ and get the remainder
The remainder is positive ($ 5000 > 0 $), so we will continue with division.
Step 2 :
Divide $ 11370 $ by $ \color{blue}{ 5000 } $ and get the remainder
The remainder is still positive ($ 1370 > 0 $), so we will continue with division.
Step 3 :
Divide $ 5000 $ by $ \color{blue}{ 1370 } $ and get the remainder
The remainder is still positive ($ 890 > 0 $), so we will continue with division.
Step 4 :
Divide $ 1370 $ by $ \color{blue}{ 890 } $ and get the remainder
The remainder is still positive ($ 480 > 0 $), so we will continue with division.
Step 5 :
Divide $ 890 $ by $ \color{blue}{ 480 } $ and get the remainder
The remainder is still positive ($ 410 > 0 $), so we will continue with division.
Step 6 :
Divide $ 480 $ by $ \color{blue}{ 410 } $ and get the remainder
The remainder is still positive ($ 70 > 0 $), so we will continue with division.
Step 7 :
Divide $ 410 $ by $ \color{blue}{ 70 } $ and get the remainder
The remainder is still positive ($ 60 > 0 $), so we will continue with division.
Step 8 :
Divide $ 70 $ by $ \color{blue}{ 60 } $ and get the remainder
The remainder is still positive ($ 10 > 0 $), so we will continue with division.
Step 9 :
Divide $ 60 $ by $ \color{blue}{ 10 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 10 }} $.
We can summarize an algorithm into a following table.
| 16370 | : | 11370 | = | 1 | remainder ( 5000 ) | ||||||||||||||||
| 11370 | : | 5000 | = | 2 | remainder ( 1370 ) | ||||||||||||||||
| 5000 | : | 1370 | = | 3 | remainder ( 890 ) | ||||||||||||||||
| 1370 | : | 890 | = | 1 | remainder ( 480 ) | ||||||||||||||||
| 890 | : | 480 | = | 1 | remainder ( 410 ) | ||||||||||||||||
| 480 | : | 410 | = | 1 | remainder ( 70 ) | ||||||||||||||||
| 410 | : | 70 | = | 5 | remainder ( 60 ) | ||||||||||||||||
| 70 | : | 60 | = | 1 | remainder ( 10 ) | ||||||||||||||||
| 60 | : | 10 | = | 6 | remainder ( 0 ) | ||||||||||||||||
| GCD = 10 | |||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.