The GCD of given numbers is 7.
Step 1 :
Divide $ 85862 $ by $ 16261 $ and get the remainder
The remainder is positive ($ 4557 > 0 $), so we will continue with division.
Step 2 :
Divide $ 16261 $ by $ \color{blue}{ 4557 } $ and get the remainder
The remainder is still positive ($ 2590 > 0 $), so we will continue with division.
Step 3 :
Divide $ 4557 $ by $ \color{blue}{ 2590 } $ and get the remainder
The remainder is still positive ($ 1967 > 0 $), so we will continue with division.
Step 4 :
Divide $ 2590 $ by $ \color{blue}{ 1967 } $ and get the remainder
The remainder is still positive ($ 623 > 0 $), so we will continue with division.
Step 5 :
Divide $ 1967 $ by $ \color{blue}{ 623 } $ and get the remainder
The remainder is still positive ($ 98 > 0 $), so we will continue with division.
Step 6 :
Divide $ 623 $ by $ \color{blue}{ 98 } $ and get the remainder
The remainder is still positive ($ 35 > 0 $), so we will continue with division.
Step 7 :
Divide $ 98 $ by $ \color{blue}{ 35 } $ and get the remainder
The remainder is still positive ($ 28 > 0 $), so we will continue with division.
Step 8 :
Divide $ 35 $ by $ \color{blue}{ 28 } $ and get the remainder
The remainder is still positive ($ 7 > 0 $), so we will continue with division.
Step 9 :
Divide $ 28 $ by $ \color{blue}{ 7 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 7 }} $.
We can summarize an algorithm into a following table.
| 85862 | : | 16261 | = | 5 | remainder ( 4557 ) | ||||||||||||||||
| 16261 | : | 4557 | = | 3 | remainder ( 2590 ) | ||||||||||||||||
| 4557 | : | 2590 | = | 1 | remainder ( 1967 ) | ||||||||||||||||
| 2590 | : | 1967 | = | 1 | remainder ( 623 ) | ||||||||||||||||
| 1967 | : | 623 | = | 3 | remainder ( 98 ) | ||||||||||||||||
| 623 | : | 98 | = | 6 | remainder ( 35 ) | ||||||||||||||||
| 98 | : | 35 | = | 2 | remainder ( 28 ) | ||||||||||||||||
| 35 | : | 28 | = | 1 | remainder ( 7 ) | ||||||||||||||||
| 28 | : | 7 | = | 4 | remainder ( 0 ) | ||||||||||||||||
| GCD = 7 | |||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.