The GCD of given numbers is 10.
Step 1 :
Divide $ 15890 $ by $ 10890 $ and get the remainder
The remainder is positive ($ 5000 > 0 $), so we will continue with division.
Step 2 :
Divide $ 10890 $ by $ \color{blue}{ 5000 } $ and get the remainder
The remainder is still positive ($ 890 > 0 $), so we will continue with division.
Step 3 :
Divide $ 5000 $ by $ \color{blue}{ 890 } $ and get the remainder
The remainder is still positive ($ 550 > 0 $), so we will continue with division.
Step 4 :
Divide $ 890 $ by $ \color{blue}{ 550 } $ and get the remainder
The remainder is still positive ($ 340 > 0 $), so we will continue with division.
Step 5 :
Divide $ 550 $ by $ \color{blue}{ 340 } $ and get the remainder
The remainder is still positive ($ 210 > 0 $), so we will continue with division.
Step 6 :
Divide $ 340 $ by $ \color{blue}{ 210 } $ and get the remainder
The remainder is still positive ($ 130 > 0 $), so we will continue with division.
Step 7 :
Divide $ 210 $ by $ \color{blue}{ 130 } $ and get the remainder
The remainder is still positive ($ 80 > 0 $), so we will continue with division.
Step 8 :
Divide $ 130 $ by $ \color{blue}{ 80 } $ and get the remainder
The remainder is still positive ($ 50 > 0 $), so we will continue with division.
Step 9 :
Divide $ 80 $ by $ \color{blue}{ 50 } $ and get the remainder
The remainder is still positive ($ 30 > 0 $), so we will continue with division.
Step 10 :
Divide $ 50 $ by $ \color{blue}{ 30 } $ and get the remainder
The remainder is still positive ($ 20 > 0 $), so we will continue with division.
Step 11 :
Divide $ 30 $ by $ \color{blue}{ 20 } $ and get the remainder
The remainder is still positive ($ 10 > 0 $), so we will continue with division.
Step 12 :
Divide $ 20 $ by $ \color{blue}{ 10 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 10 }} $.
We can summarize an algorithm into a following table.
| 15890 | : | 10890 | = | 1 | remainder ( 5000 ) | ||||||||||||||||||||||
| 10890 | : | 5000 | = | 2 | remainder ( 890 ) | ||||||||||||||||||||||
| 5000 | : | 890 | = | 5 | remainder ( 550 ) | ||||||||||||||||||||||
| 890 | : | 550 | = | 1 | remainder ( 340 ) | ||||||||||||||||||||||
| 550 | : | 340 | = | 1 | remainder ( 210 ) | ||||||||||||||||||||||
| 340 | : | 210 | = | 1 | remainder ( 130 ) | ||||||||||||||||||||||
| 210 | : | 130 | = | 1 | remainder ( 80 ) | ||||||||||||||||||||||
| 130 | : | 80 | = | 1 | remainder ( 50 ) | ||||||||||||||||||||||
| 80 | : | 50 | = | 1 | remainder ( 30 ) | ||||||||||||||||||||||
| 50 | : | 30 | = | 1 | remainder ( 20 ) | ||||||||||||||||||||||
| 30 | : | 20 | = | 1 | remainder ( 10 ) | ||||||||||||||||||||||
| 20 | : | 10 | = | 2 | remainder ( 0 ) | ||||||||||||||||||||||
| GCD = 10 | |||||||||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.