The GCD of given numbers is 10.
Step 1 :
Divide $ 15710 $ by $ 10710 $ and get the remainder
The remainder is positive ($ 5000 > 0 $), so we will continue with division.
Step 2 :
Divide $ 10710 $ by $ \color{blue}{ 5000 } $ and get the remainder
The remainder is still positive ($ 710 > 0 $), so we will continue with division.
Step 3 :
Divide $ 5000 $ by $ \color{blue}{ 710 } $ and get the remainder
The remainder is still positive ($ 30 > 0 $), so we will continue with division.
Step 4 :
Divide $ 710 $ by $ \color{blue}{ 30 } $ and get the remainder
The remainder is still positive ($ 20 > 0 $), so we will continue with division.
Step 5 :
Divide $ 30 $ by $ \color{blue}{ 20 } $ and get the remainder
The remainder is still positive ($ 10 > 0 $), so we will continue with division.
Step 6 :
Divide $ 20 $ by $ \color{blue}{ 10 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 10 }} $.
We can summarize an algorithm into a following table.
| 15710 | : | 10710 | = | 1 | remainder ( 5000 ) | ||||||||||
| 10710 | : | 5000 | = | 2 | remainder ( 710 ) | ||||||||||
| 5000 | : | 710 | = | 7 | remainder ( 30 ) | ||||||||||
| 710 | : | 30 | = | 23 | remainder ( 20 ) | ||||||||||
| 30 | : | 20 | = | 1 | remainder ( 10 ) | ||||||||||
| 20 | : | 10 | = | 2 | remainder ( 0 ) | ||||||||||
| GCD = 10 | |||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.