The GCD of given numbers is 6.
Step 1 :
Divide $ 4200021066 $ by $ 155590302 $ and get the remainder
The remainder is positive ($ 154673214 > 0 $), so we will continue with division.
Step 2 :
Divide $ 155590302 $ by $ \color{blue}{ 154673214 } $ and get the remainder
The remainder is still positive ($ 917088 > 0 $), so we will continue with division.
Step 3 :
Divide $ 154673214 $ by $ \color{blue}{ 917088 } $ and get the remainder
The remainder is still positive ($ 602430 > 0 $), so we will continue with division.
Step 4 :
Divide $ 917088 $ by $ \color{blue}{ 602430 } $ and get the remainder
The remainder is still positive ($ 314658 > 0 $), so we will continue with division.
Step 5 :
Divide $ 602430 $ by $ \color{blue}{ 314658 } $ and get the remainder
The remainder is still positive ($ 287772 > 0 $), so we will continue with division.
Step 6 :
Divide $ 314658 $ by $ \color{blue}{ 287772 } $ and get the remainder
The remainder is still positive ($ 26886 > 0 $), so we will continue with division.
Step 7 :
Divide $ 287772 $ by $ \color{blue}{ 26886 } $ and get the remainder
The remainder is still positive ($ 18912 > 0 $), so we will continue with division.
Step 8 :
Divide $ 26886 $ by $ \color{blue}{ 18912 } $ and get the remainder
The remainder is still positive ($ 7974 > 0 $), so we will continue with division.
Step 9 :
Divide $ 18912 $ by $ \color{blue}{ 7974 } $ and get the remainder
The remainder is still positive ($ 2964 > 0 $), so we will continue with division.
Step 10 :
Divide $ 7974 $ by $ \color{blue}{ 2964 } $ and get the remainder
The remainder is still positive ($ 2046 > 0 $), so we will continue with division.
Step 11 :
Divide $ 2964 $ by $ \color{blue}{ 2046 } $ and get the remainder
The remainder is still positive ($ 918 > 0 $), so we will continue with division.
Step 12 :
Divide $ 2046 $ by $ \color{blue}{ 918 } $ and get the remainder
The remainder is still positive ($ 210 > 0 $), so we will continue with division.
Step 13 :
Divide $ 918 $ by $ \color{blue}{ 210 } $ and get the remainder
The remainder is still positive ($ 78 > 0 $), so we will continue with division.
Step 14 :
Divide $ 210 $ by $ \color{blue}{ 78 } $ and get the remainder
The remainder is still positive ($ 54 > 0 $), so we will continue with division.
Step 15 :
Divide $ 78 $ by $ \color{blue}{ 54 } $ and get the remainder
The remainder is still positive ($ 24 > 0 $), so we will continue with division.
Step 16 :
Divide $ 54 $ by $ \color{blue}{ 24 } $ and get the remainder
The remainder is still positive ($ 6 > 0 $), so we will continue with division.
Step 17 :
Divide $ 24 $ by $ \color{blue}{ 6 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 6 }} $.
We can summarize an algorithm into a following table.
| 4200021066 | : | 155590302 | = | 26 | remainder ( 154673214 ) | ||||||||||||||||||||||||||||||||
| 155590302 | : | 154673214 | = | 1 | remainder ( 917088 ) | ||||||||||||||||||||||||||||||||
| 154673214 | : | 917088 | = | 168 | remainder ( 602430 ) | ||||||||||||||||||||||||||||||||
| 917088 | : | 602430 | = | 1 | remainder ( 314658 ) | ||||||||||||||||||||||||||||||||
| 602430 | : | 314658 | = | 1 | remainder ( 287772 ) | ||||||||||||||||||||||||||||||||
| 314658 | : | 287772 | = | 1 | remainder ( 26886 ) | ||||||||||||||||||||||||||||||||
| 287772 | : | 26886 | = | 10 | remainder ( 18912 ) | ||||||||||||||||||||||||||||||||
| 26886 | : | 18912 | = | 1 | remainder ( 7974 ) | ||||||||||||||||||||||||||||||||
| 18912 | : | 7974 | = | 2 | remainder ( 2964 ) | ||||||||||||||||||||||||||||||||
| 7974 | : | 2964 | = | 2 | remainder ( 2046 ) | ||||||||||||||||||||||||||||||||
| 2964 | : | 2046 | = | 1 | remainder ( 918 ) | ||||||||||||||||||||||||||||||||
| 2046 | : | 918 | = | 2 | remainder ( 210 ) | ||||||||||||||||||||||||||||||||
| 918 | : | 210 | = | 4 | remainder ( 78 ) | ||||||||||||||||||||||||||||||||
| 210 | : | 78 | = | 2 | remainder ( 54 ) | ||||||||||||||||||||||||||||||||
| 78 | : | 54 | = | 1 | remainder ( 24 ) | ||||||||||||||||||||||||||||||||
| 54 | : | 24 | = | 2 | remainder ( 6 ) | ||||||||||||||||||||||||||||||||
| 24 | : | 6 | = | 4 | remainder ( 0 ) | ||||||||||||||||||||||||||||||||
| GCD = 6 | |||||||||||||||||||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.