The GCD of given numbers is 223.
Step 1 :
Divide $ 1552303 $ by $ 233927 $ and get the remainder
The remainder is positive ($ 148741 > 0 $), so we will continue with division.
Step 2 :
Divide $ 233927 $ by $ \color{blue}{ 148741 } $ and get the remainder
The remainder is still positive ($ 85186 > 0 $), so we will continue with division.
Step 3 :
Divide $ 148741 $ by $ \color{blue}{ 85186 } $ and get the remainder
The remainder is still positive ($ 63555 > 0 $), so we will continue with division.
Step 4 :
Divide $ 85186 $ by $ \color{blue}{ 63555 } $ and get the remainder
The remainder is still positive ($ 21631 > 0 $), so we will continue with division.
Step 5 :
Divide $ 63555 $ by $ \color{blue}{ 21631 } $ and get the remainder
The remainder is still positive ($ 20293 > 0 $), so we will continue with division.
Step 6 :
Divide $ 21631 $ by $ \color{blue}{ 20293 } $ and get the remainder
The remainder is still positive ($ 1338 > 0 $), so we will continue with division.
Step 7 :
Divide $ 20293 $ by $ \color{blue}{ 1338 } $ and get the remainder
The remainder is still positive ($ 223 > 0 $), so we will continue with division.
Step 8 :
Divide $ 1338 $ by $ \color{blue}{ 223 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 223 }} $.
We can summarize an algorithm into a following table.
| 1552303 | : | 233927 | = | 6 | remainder ( 148741 ) | ||||||||||||||
| 233927 | : | 148741 | = | 1 | remainder ( 85186 ) | ||||||||||||||
| 148741 | : | 85186 | = | 1 | remainder ( 63555 ) | ||||||||||||||
| 85186 | : | 63555 | = | 1 | remainder ( 21631 ) | ||||||||||||||
| 63555 | : | 21631 | = | 2 | remainder ( 20293 ) | ||||||||||||||
| 21631 | : | 20293 | = | 1 | remainder ( 1338 ) | ||||||||||||||
| 20293 | : | 1338 | = | 15 | remainder ( 223 ) | ||||||||||||||
| 1338 | : | 223 | = | 6 | remainder ( 0 ) | ||||||||||||||
| GCD = 223 | |||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.