The GCD of given numbers is 22.
Step 1 :
Divide $ 24486 $ by $ 14828 $ and get the remainder
The remainder is positive ($ 9658 > 0 $), so we will continue with division.
Step 2 :
Divide $ 14828 $ by $ \color{blue}{ 9658 } $ and get the remainder
The remainder is still positive ($ 5170 > 0 $), so we will continue with division.
Step 3 :
Divide $ 9658 $ by $ \color{blue}{ 5170 } $ and get the remainder
The remainder is still positive ($ 4488 > 0 $), so we will continue with division.
Step 4 :
Divide $ 5170 $ by $ \color{blue}{ 4488 } $ and get the remainder
The remainder is still positive ($ 682 > 0 $), so we will continue with division.
Step 5 :
Divide $ 4488 $ by $ \color{blue}{ 682 } $ and get the remainder
The remainder is still positive ($ 396 > 0 $), so we will continue with division.
Step 6 :
Divide $ 682 $ by $ \color{blue}{ 396 } $ and get the remainder
The remainder is still positive ($ 286 > 0 $), so we will continue with division.
Step 7 :
Divide $ 396 $ by $ \color{blue}{ 286 } $ and get the remainder
The remainder is still positive ($ 110 > 0 $), so we will continue with division.
Step 8 :
Divide $ 286 $ by $ \color{blue}{ 110 } $ and get the remainder
The remainder is still positive ($ 66 > 0 $), so we will continue with division.
Step 9 :
Divide $ 110 $ by $ \color{blue}{ 66 } $ and get the remainder
The remainder is still positive ($ 44 > 0 $), so we will continue with division.
Step 10 :
Divide $ 66 $ by $ \color{blue}{ 44 } $ and get the remainder
The remainder is still positive ($ 22 > 0 $), so we will continue with division.
Step 11 :
Divide $ 44 $ by $ \color{blue}{ 22 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 22 }} $.
We can summarize an algorithm into a following table.
| 24486 | : | 14828 | = | 1 | remainder ( 9658 ) | ||||||||||||||||||||
| 14828 | : | 9658 | = | 1 | remainder ( 5170 ) | ||||||||||||||||||||
| 9658 | : | 5170 | = | 1 | remainder ( 4488 ) | ||||||||||||||||||||
| 5170 | : | 4488 | = | 1 | remainder ( 682 ) | ||||||||||||||||||||
| 4488 | : | 682 | = | 6 | remainder ( 396 ) | ||||||||||||||||||||
| 682 | : | 396 | = | 1 | remainder ( 286 ) | ||||||||||||||||||||
| 396 | : | 286 | = | 1 | remainder ( 110 ) | ||||||||||||||||||||
| 286 | : | 110 | = | 2 | remainder ( 66 ) | ||||||||||||||||||||
| 110 | : | 66 | = | 1 | remainder ( 44 ) | ||||||||||||||||||||
| 66 | : | 44 | = | 1 | remainder ( 22 ) | ||||||||||||||||||||
| 44 | : | 22 | = | 2 | remainder ( 0 ) | ||||||||||||||||||||
| GCD = 22 | |||||||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.