The GCD of given numbers is 1.
Step 1 :
Divide $ 1729245 $ by $ 142736 $ and get the remainder
The remainder is positive ($ 16413 > 0 $), so we will continue with division.
Step 2 :
Divide $ 142736 $ by $ \color{blue}{ 16413 } $ and get the remainder
The remainder is still positive ($ 11432 > 0 $), so we will continue with division.
Step 3 :
Divide $ 16413 $ by $ \color{blue}{ 11432 } $ and get the remainder
The remainder is still positive ($ 4981 > 0 $), so we will continue with division.
Step 4 :
Divide $ 11432 $ by $ \color{blue}{ 4981 } $ and get the remainder
The remainder is still positive ($ 1470 > 0 $), so we will continue with division.
Step 5 :
Divide $ 4981 $ by $ \color{blue}{ 1470 } $ and get the remainder
The remainder is still positive ($ 571 > 0 $), so we will continue with division.
Step 6 :
Divide $ 1470 $ by $ \color{blue}{ 571 } $ and get the remainder
The remainder is still positive ($ 328 > 0 $), so we will continue with division.
Step 7 :
Divide $ 571 $ by $ \color{blue}{ 328 } $ and get the remainder
The remainder is still positive ($ 243 > 0 $), so we will continue with division.
Step 8 :
Divide $ 328 $ by $ \color{blue}{ 243 } $ and get the remainder
The remainder is still positive ($ 85 > 0 $), so we will continue with division.
Step 9 :
Divide $ 243 $ by $ \color{blue}{ 85 } $ and get the remainder
The remainder is still positive ($ 73 > 0 $), so we will continue with division.
Step 10 :
Divide $ 85 $ by $ \color{blue}{ 73 } $ and get the remainder
The remainder is still positive ($ 12 > 0 $), so we will continue with division.
Step 11 :
Divide $ 73 $ by $ \color{blue}{ 12 } $ and get the remainder
The remainder is still positive ($ 1 > 0 $), so we will continue with division.
Step 12 :
Divide $ 12 $ by $ \color{blue}{ 1 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 1 }} $.
We can summarize an algorithm into a following table.
| 1729245 | : | 142736 | = | 12 | remainder ( 16413 ) | ||||||||||||||||||||||
| 142736 | : | 16413 | = | 8 | remainder ( 11432 ) | ||||||||||||||||||||||
| 16413 | : | 11432 | = | 1 | remainder ( 4981 ) | ||||||||||||||||||||||
| 11432 | : | 4981 | = | 2 | remainder ( 1470 ) | ||||||||||||||||||||||
| 4981 | : | 1470 | = | 3 | remainder ( 571 ) | ||||||||||||||||||||||
| 1470 | : | 571 | = | 2 | remainder ( 328 ) | ||||||||||||||||||||||
| 571 | : | 328 | = | 1 | remainder ( 243 ) | ||||||||||||||||||||||
| 328 | : | 243 | = | 1 | remainder ( 85 ) | ||||||||||||||||||||||
| 243 | : | 85 | = | 2 | remainder ( 73 ) | ||||||||||||||||||||||
| 85 | : | 73 | = | 1 | remainder ( 12 ) | ||||||||||||||||||||||
| 73 | : | 12 | = | 6 | remainder ( 1 ) | ||||||||||||||||||||||
| 12 | : | 1 | = | 12 | remainder ( 0 ) | ||||||||||||||||||||||
| GCD = 1 | |||||||||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.