The GCD of given numbers is 11.
Step 1 :
Divide $ 1251096 $ by $ 29249 $ and get the remainder
The remainder is positive ($ 22638 > 0 $), so we will continue with division.
Step 2 :
Divide $ 29249 $ by $ \color{blue}{ 22638 } $ and get the remainder
The remainder is still positive ($ 6611 > 0 $), so we will continue with division.
Step 3 :
Divide $ 22638 $ by $ \color{blue}{ 6611 } $ and get the remainder
The remainder is still positive ($ 2805 > 0 $), so we will continue with division.
Step 4 :
Divide $ 6611 $ by $ \color{blue}{ 2805 } $ and get the remainder
The remainder is still positive ($ 1001 > 0 $), so we will continue with division.
Step 5 :
Divide $ 2805 $ by $ \color{blue}{ 1001 } $ and get the remainder
The remainder is still positive ($ 803 > 0 $), so we will continue with division.
Step 6 :
Divide $ 1001 $ by $ \color{blue}{ 803 } $ and get the remainder
The remainder is still positive ($ 198 > 0 $), so we will continue with division.
Step 7 :
Divide $ 803 $ by $ \color{blue}{ 198 } $ and get the remainder
The remainder is still positive ($ 11 > 0 $), so we will continue with division.
Step 8 :
Divide $ 198 $ by $ \color{blue}{ 11 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 11 }} $.
We can summarize an algorithm into a following table.
| 1251096 | : | 29249 | = | 42 | remainder ( 22638 ) | ||||||||||||||
| 29249 | : | 22638 | = | 1 | remainder ( 6611 ) | ||||||||||||||
| 22638 | : | 6611 | = | 3 | remainder ( 2805 ) | ||||||||||||||
| 6611 | : | 2805 | = | 2 | remainder ( 1001 ) | ||||||||||||||
| 2805 | : | 1001 | = | 2 | remainder ( 803 ) | ||||||||||||||
| 1001 | : | 803 | = | 1 | remainder ( 198 ) | ||||||||||||||
| 803 | : | 198 | = | 4 | remainder ( 11 ) | ||||||||||||||
| 198 | : | 11 | = | 18 | remainder ( 0 ) | ||||||||||||||
| GCD = 11 | |||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.