The GCD of given numbers is 1.
Step 1 :
Divide $ 12211 $ by $ 10422 $ and get the remainder
The remainder is positive ($ 1789 > 0 $), so we will continue with division.
Step 2 :
Divide $ 10422 $ by $ \color{blue}{ 1789 } $ and get the remainder
The remainder is still positive ($ 1477 > 0 $), so we will continue with division.
Step 3 :
Divide $ 1789 $ by $ \color{blue}{ 1477 } $ and get the remainder
The remainder is still positive ($ 312 > 0 $), so we will continue with division.
Step 4 :
Divide $ 1477 $ by $ \color{blue}{ 312 } $ and get the remainder
The remainder is still positive ($ 229 > 0 $), so we will continue with division.
Step 5 :
Divide $ 312 $ by $ \color{blue}{ 229 } $ and get the remainder
The remainder is still positive ($ 83 > 0 $), so we will continue with division.
Step 6 :
Divide $ 229 $ by $ \color{blue}{ 83 } $ and get the remainder
The remainder is still positive ($ 63 > 0 $), so we will continue with division.
Step 7 :
Divide $ 83 $ by $ \color{blue}{ 63 } $ and get the remainder
The remainder is still positive ($ 20 > 0 $), so we will continue with division.
Step 8 :
Divide $ 63 $ by $ \color{blue}{ 20 } $ and get the remainder
The remainder is still positive ($ 3 > 0 $), so we will continue with division.
Step 9 :
Divide $ 20 $ by $ \color{blue}{ 3 } $ and get the remainder
The remainder is still positive ($ 2 > 0 $), so we will continue with division.
Step 10 :
Divide $ 3 $ by $ \color{blue}{ 2 } $ and get the remainder
The remainder is still positive ($ 1 > 0 $), so we will continue with division.
Step 11 :
Divide $ 2 $ by $ \color{blue}{ 1 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 1 }} $.
We can summarize an algorithm into a following table.
| 12211 | : | 10422 | = | 1 | remainder ( 1789 ) | ||||||||||||||||||||
| 10422 | : | 1789 | = | 5 | remainder ( 1477 ) | ||||||||||||||||||||
| 1789 | : | 1477 | = | 1 | remainder ( 312 ) | ||||||||||||||||||||
| 1477 | : | 312 | = | 4 | remainder ( 229 ) | ||||||||||||||||||||
| 312 | : | 229 | = | 1 | remainder ( 83 ) | ||||||||||||||||||||
| 229 | : | 83 | = | 2 | remainder ( 63 ) | ||||||||||||||||||||
| 83 | : | 63 | = | 1 | remainder ( 20 ) | ||||||||||||||||||||
| 63 | : | 20 | = | 3 | remainder ( 3 ) | ||||||||||||||||||||
| 20 | : | 3 | = | 6 | remainder ( 2 ) | ||||||||||||||||||||
| 3 | : | 2 | = | 1 | remainder ( 1 ) | ||||||||||||||||||||
| 2 | : | 1 | = | 2 | remainder ( 0 ) | ||||||||||||||||||||
| GCD = 1 | |||||||||||||||||||||||||
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.