STEP 1: find side $ a $
To find side $ a $ use formula:
$$ A = \dfrac{ \sqrt{ 3 } \cdot a^2 }{ 4 }$$After substituting $A = 3\, \text{cm}$ we have:
$$ 3\, \text{cm} = \dfrac{ \sqrt{ 3 } \cdot a^2 }{ 4 }$$ $$ 3\, \text{cm} \cdot 4 = \sqrt{ 3 } \cdot a^2 $$ $$ 12\, \text{cm} = \sqrt{ 3 } \cdot a^2 $$ $$ a^2 = \dfrac{ 12\, \text{cm} }{ \sqrt{ 3 } } $$ $$ a^2 = 4 \sqrt{ 3 }\, \text{cm} $$ $$ a = \sqrt{ 4 \sqrt{ 3 }\, \text{cm} } $$$$ a \approx 2.6321 $$STEP 2: find circumradius $ R $
To find circumradius $ R $ use formula:
$$ R = \dfrac{ \sqrt{ 3 } \cdot a }{ 3 } $$After substituting $a = 2.6321\, \text{cm}^0$ we have:
$$ R = \dfrac{ \sqrt{ 3 } \cdot 2.6321 }{ 3 } $$$$ R = \dfrac{ 4.559 }{ 3 } $$ $$ R \approx 1.5197 $$