Derivative
(the database of solved problems)
All the problems and solutions shown below were generated using the Derivative Calculator.
| ID |
Problem |
Count |
| 4801 | $ 20{\mathrm{e}}^{-0.4}{\cdot}x $ | 1 |
| 4802 | $ {\left(\cosh\left(2x-3\right)\right)}^{-1} $ | 1 |
| 4803 | $ \, x \, $ | 1 |
| 4804 | $ x $ | 1 |
| 4805 | $ 45x $ | 1 |
| 4806 | $ \dfrac{4}{1}+{\mathrm{e}}^{-\left(2x-5\right)} $ | 1 |
| 4807 | $ \dfrac{4}{1+{\mathrm{e}}^{-\left(2x-5\right)}} $ | 1 |
| 4808 | $ \ln\left(x-9\right) $ | 1 |
| 4809 | $ {\left({x}^{4}+3{x}^{2}-9\right)}^{5} $ | 1 |
| 4810 | $ \sqrt{2}-{t}^{6} $ | 1 |
| 4811 | $ \, x \, $ | 1 |
| 4812 | $ \, x \, $ | 1 |
| 4813 | $ 12-3x $ | 1 |
| 4814 | $ -7hx $ | 1 |
| 4815 | $ 3{x}^{2}{\cdot}{1.2}^{x} $ | 1 |
| 4816 | $ \dfrac{2x}{{\left(1-{x}^{2}\right)}^{2}} $ | 1 |
| 4817 | $ \dfrac{1}{1-{x}^{2}} $ | 1 |
| 4818 | $ 6x+\dfrac{1}{6}{\cdot}x+3 $ | 1 |
| 4819 | $ \, x \, $ | 1 |
| 4820 | $ \, x \, $ | 1 |
| 4821 | $ \, x \, $ | 1 |
| 4822 | $ \, x \, $ | 1 |
| 4823 | $ \, x \, $ | 1 |
| 4824 | $ \, x \, $ | 1 |
| 4825 | $ \, x \, $ | 1 |
| 4826 | $ \, x \, $ | 1 |
| 4827 | $ \, x \, $ | 1 |
| 4828 | $ \, x \, $ | 1 |
| 4829 | $ \, x \, $ | 1 |
| 4830 | $ \, x \, $ | 1 |
| 4831 | $ \, x \, $ | 1 |
| 4832 | $ \, x \, $ | 1 |
| 4833 | $ {\left(1+2x\right)}^{0.5} $ | 1 |
| 4834 | $ \dfrac{\ln\left(\mathrm{e}{\cdot}x\right)}{6}{\cdot}\ln\left(x\right) $ | 1 |
| 4835 | $ \dfrac{\ln\left(\mathrm{e}{\cdot}x\right)}{6{\cdot}\ln\left(x\right)} $ | 1 |
| 4836 | $ \cos\left(x\right){\cdot}4{\cdot}\sin\left(x\right) $ | 1 |
| 4837 | $ \dfrac{d}{d}{\cdot}t{\cdot}{\left(4t-5t\right)}^{4} $ | 1 |
| 4838 | $ {x}^{0.1x} $ | 1 |
| 4839 | $ \ln\left(\dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right) $ | 1 |
| 4840 | $ \ln\left(\sqrt{1+x}-\sqrt{1-x}\right) $ | 1 |
| 4841 | $ \ln\left(x\right) $ | 1 |
| 4842 | $ \ln\left(1-\sqrt{1-{x}^{2}}\right) $ | 1 |
| 4843 | $ 1-{\left(1-{x}^{2}\right)}^{\frac{-1}{2}} $ | 1 |
| 4844 | | 1 |
| 4845 | $ -{\left(1-{x}^{2}\right)}^{\frac{1}{2}} $ | 1 |
| 4846 | $ {\left(1-{x}^{2}\right)}^{\frac{-3}{2}} $ | 1 |
| 4847 | $ {\left(1-{x}^{2}\right)}^{\frac{a}{2}} $ | 1 |
| 4848 | $ \dfrac{x}{900} $ | 1 |
| 4849 | $ 1-{x}^{\frac{-1}{2}} $ | 1 |
| 4850 | $ {x}^{\frac{-1}{2}} $ | 1 |