Derivative
(the database of solved problems)
All the problems and solutions shown below were generated using the Derivative Calculator.
| ID |
Problem |
Count |
| 3851 | $ \, x \, $ | 1 |
| 3852 | $ \, x \, $ | 1 |
| 3853 | $ \, x \, $ | 1 |
| 3854 | $ \, x \, $ | 1 |
| 3855 | $ \, x \, $ | 1 |
| 3856 | $ \, x \, $ | 1 |
| 3857 | $ \, x \, $ | 1 |
| 3858 | $ \, x \, $ | 1 |
| 3859 | $ \, x \, $ | 1 |
| 3860 | $ \, x \, $ | 1 |
| 3861 | $ \, x \, $ | 1 |
| 3862 | $ \, x \, $ | 1 |
| 3863 | $ \, x \, $ | 1 |
| 3864 | $ \, x \, $ | 1 |
| 3865 | $ \, x \, $ | 1 |
| 3866 | $ \, x \, $ | 1 |
| 3867 | $ \, x \, $ | 1 |
| 3868 | $ \, x \, $ | 1 |
| 3869 | $ \, x \, $ | 1 |
| 3870 | $ \dfrac{\arcsin\left(\dfrac{x}{3}\right)}{3} $ | 1 |
| 3871 | $ \arcsin\left(\dfrac{x}{3}\right) $ | 1 |
| 3872 | $ 4{\cdot}\left(\dfrac{{x}^{2}{\cdot}\ln\left(x\right)}{2}-\dfrac{{x}^{2}}{4}\right) $ | 1 |
| 3873 | $ \dfrac{{\mathrm{e}}^{x}{\cdot}\sin\left(x\right){\cdot}{\mathrm{e}}^{x}{\cdot}\cos\left(x\right)}{2}+c $ | 1 |
| 3874 | $ \dfrac{{x}^{3}}{36}-1+\cos\left(x\right) $ | 1 |
| 3875 | $ \dfrac{-{x}^{3}}{36}-1+\cos\left(x\right) $ | 1 |
| 3876 | $ \, x \, $ | 1 |
| 3877 | $ \, x \, $ | 1 |
| 3878 | $ \, x \, $ | 1 |
| 3879 | $ \, x \, $ | 1 |
| 3880 | $ \, x \, $ | 1 |
| 3881 | $ \, x \, $ | 1 |
| 3882 | $ \, x \, $ | 1 |
| 3883 | $ \, x \, $ | 1 |
| 3884 | $ \, x \, $ | 1 |
| 3885 | $ \, x \, $ | 1 |
| 3886 | $ \, x \, $ | 1 |
| 3887 | $ \, x \, $ | 1 |
| 3888 | $ \, x \, $ | 1 |
| 3889 | $ \, x \, $ | 1 |
| 3890 | $ {x}^{\frac{5}{2}}+4{x}^{-\frac{1}{3}}+\mathrm{e}{\cdot}x-\dfrac{1}{\ln\left(2\right)} $ | 1 |
| 3891 | $ {x}^{\frac{5}{2}}+4{x}^{-\frac{1}{3}}+\mathrm{e}{\cdot}{\pi}-\dfrac{1}{\ln\left(2\right)} $ | 1 |
| 3892 | $ {2}{x}+\frac{{1}}{{x}} $ | 1 |
| 3893 | $ \ln\left(30\right)+{\mathrm{e}}^{7}+\sin\left(\dfrac{{\pi}}{2}\right) $ | 1 |
| 3894 | $ x{\cdot}{\left({x}^{2}+1\right)}^{0.5} $ | 1 |
| 3895 | $ x{\cdot}\sqrt{{x}^{2}+1} $ | 1 |
| 3896 | $ \, x \, $ | 1 |
| 3897 | $ \, x \, $ | 1 |
| 3898 | $ \, x \, $ | 1 |
| 3899 | $ \, x \, $ | 1 |
| 3900 | $ \dfrac{3000}{p}-100 $ | 1 |