Derivative
(the database of solved problems)
All the problems and solutions shown below were generated using the Derivative Calculator.
| ID |
Problem |
Count |
| 3351 | $ \dfrac{x}{4-x} $ | 1 |
| 3352 | $ \dfrac{x}{4-x} $ | 1 |
| 3353 | $ \left(x+2{\cdot}\sqrt{x}\right){\cdot}{\mathrm{e}}^{x} $ | 1 |
| 3354 | $ 50{\cdot}\sqrt{x} $ | 1 |
| 3355 | $ {x}^{4}-2x+\dfrac{3}{{x}^{2}} $ | 1 |
| 3356 | $ \, x \, $ | 1 |
| 3357 | $ \, x \, $ | 1 |
| 3358 | $ \, x \, $ | 1 |
| 3359 | $ \, x \, $ | 1 |
| 3360 | $ \, x \, $ | 1 |
| 3361 | $ \, x \, $ | 1 |
| 3362 | $ \, x \, $ | 1 |
| 3363 | $ \, x \, $ | 1 |
| 3364 | $ \, x \, $ | 1 |
| 3365 | $ \, x \, $ | 1 |
| 3366 | $ \, x \, $ | 1 |
| 3367 | $ \, x \, $ | 1 |
| 3368 | $ \, x \, $ | 1 |
| 3369 | $ \, x \, $ | 1 |
| 3370 | $ \, x \, $ | 1 |
| 3371 | $ \, x \, $ | 1 |
| 3372 | $ \, x \, $ | 1 |
| 3373 | $ 3x{\cdot}\left(18{x}^{4}+(\dfrac{13}{x+1})\right) $ | 1 |
| 3374 | $ \, x \, $ | 1 |
| 3375 | $ \, x \, $ | 1 |
| 3376 | $ \, x \, $ | 1 |
| 3377 | $ \, x \, $ | 1 |
| 3378 | $ \, x \, $ | 1 |
| 3379 | $ \, x \, $ | 1 |
| 3380 | $ {\mathrm{e}}^{11} $ | 1 |
| 3381 | $ 500{\cdot}{\left(1-\dfrac{x}{60}\right)}^{2} $ | 1 |
| 3382 | $ 9x-10x{\cdot}{\mathrm{e}}^{x} $ | 1 |
| 3383 | $ {\left(1-\dfrac{x}{60}\right)}^{2} $ | 1 |
| 3384 | $ {\mathrm{e}}^{-x}{\cdot}\sin\left(x\right) $ | 1 |
| 3385 | $ 9{\cdot}\sin\left(x\right)+6{\mathrm{e}}^{x} $ | 1 |
| 3386 | $ 7{x}^{4}-28x-{\mathrm{e}}^{5} $ | 1 |
| 3387 | $ 2x+5x{\cdot}{\mathrm{e}}^{x} $ | 1 |
| 3388 | $ \dfrac{8{\mathrm{e}}^{x}}{3{\mathrm{e}}^{x}+7} $ | 1 |
| 3389 | $ 200{\cdot}\cos\left({\pi}\right){\cdot}t $ | 1 |
| 3390 | $ \cos\left(x\right)+7{\mathrm{e}}^{x} $ | 1 |
| 3391 | $ \dfrac{x-2}{{x}^{2}+x+1} $ | 1 |
| 3392 | $ \ln\left(cub{\cdot}\mathrm{e}{\cdot}root\right) $ | 1 |
| 3393 | $ \ln\left({\left(\cos\left(x\right)\right)}^{\frac{1}{3}}\right) $ | 1 |
| 3394 | $ \, x \, $ | 1 |
| 3395 | $ \, x \, $ | 1 |
| 3396 | $ {\left(4t+6\right)}^{5} $ | 1 |
| 3397 | $ \sec\left(\color{orangered}{\square}\right) $ | 1 |
| 3398 | $ \left(\dfrac{3}{2}{\cdot}x-1\right){\cdot}\left(\dfrac{9}{4}{\cdot}x-1\right) $ | 1 |
| 3399 | $ 4x{\cdot}{\left(\sqrt{16}-{x}^{2}\right)}^{0.5} $ | 1 |
| 3400 | $ \dfrac{{x}^{3}}{2{x}^{2}-4} $ | 1 |