Derivative
(the database of solved problems)
All the problems and solutions shown below were generated using the Derivative Calculator.
| ID |
Problem |
Count |
| 2951 | $ \, x \, $ | 1 |
| 2952 | $ {\mathrm{e}}^{2x}{\cdot}\sin\left(6x\right) $ | 1 |
| 2953 | $ \ln\left(\dfrac{-1}{6}\right)-x $ | 1 |
| 2954 | $ 0.01{\cdot}{\left(x-27.236\right)}^{2}+{\mathrm{e}}^{x-27.236}+3.046 $ | 1 |
| 2955 | $ \dfrac{1}{\cos\left(x\right)} $ | 1 |
| 2956 | $ {3}{x}^{{3}}-{6}{x}^{{2}}+{5}{x}+{7} $ | 1 |
| 2957 | $ {3}{x}^{{3}}-{6}{x}^{{2}}+{5}{x}+{7} $ | 1 |
| 2958 | $ {3}{x}^{{3}}-{6}{x}^{{2}}+{5}{x}+{7} $ | 1 |
| 2959 | $ \, x \, $ | 1 |
| 2960 | $ \, x \, $ | 1 |
| 2961 | $ \, x \, $ | 1 |
| 2962 | $ {\left(1+r\right)}^{x} $ | 1 |
| 2963 | $ 2x-0.6x{\cdot}\ln\left(x\right) $ | 1 |
| 2964 | $ 2x-0.6x{\cdot}\ln\left(x\right) $ | 1 |
| 2965 | $ -4{\cdot}\cos\left(\dfrac{{\pi}{\cdot}x}{15}\right) $ | 1 |
| 2966 | $ 5.4-4{\cdot}\cos\left(\dfrac{{\pi}{\cdot}x}{15}\right) $ | 1 |
| 2967 | $ {a}^{0.5}{\cdot}\left(100-p\right) $ | 1 |
| 2968 | $ {a}^{0.5}{\cdot}\left(100-p\right) $ | 1 |
| 2969 | $ 40{\mathrm{e}}^{x}+i{\cdot}nx-2vx $ | 1 |
| 2970 | $ \dfrac{12{x}^{3}-27{x}^{2}-70x+76}{{\left(3x-7\right)}^{2}} $ | 1 |
| 2971 | $ \dfrac{12{x}^{3}-27{x}^{2}-70x+76}{{\left(3x-7\right)}^{2}} $ | 1 |
| 2972 | $ \dfrac{1}{2}{\cdot}\sqrt{x+1} $ | 1 |
| 2973 | $ \sqrt{{2}^{x}-3x+7} $ | 1 |
| 2974 | $ \, x \, $ | 1 |
| 2975 | $ \, x \, $ | 1 |
| 2976 | $ \, x \, $ | 1 |
| 2977 | $ \, x \, $ | 1 |
| 2978 | $ \tan\left(3y{x}^{3}\right) $ | 1 |
| 2979 | $ \tan\left({x}^{3}\right) $ | 1 |
| 2980 | $ \tan\left(3{x}^{3}\right) $ | 1 |
| 2981 | $ \ln\left({x}^{6}-{y}^{4}\right) $ | 1 |
| 2982 | $ \dfrac{9}{4+\ln\left(7x\right)} $ | 1 |
| 2983 | $ {\left(x+2\right)}^{2}{\cdot}\sin\left(x\right) $ | 1 |
| 2984 | $ x+1 $ | 1 |
| 2985 | $ 0.4 $ | 1 |
| 2986 | $ 2x{\cdot}\left(\sqrt{5}-5x\right) $ | 1 |
| 2987 | $ 2{\cdot}{\left(6{x}^{4}-4{x}^{4}-9{x}^{3}\right)}^{2} $ | 1 |
| 2988 | $ \left(7{x}^{3}-6{x}^{4}+9x\right){\cdot}\left(1{x}^{3}+10x+6{x}^{2}\right) $ | 1 |
| 2989 | $ \dfrac{1{x}^{4}-4{x}^{2}-1{x}^{3}}{10x+1{x}^{2}-5{x}^{2}} $ | 1 |
| 2990 | $ \left(7{x}^{3}+4x-2{x}^{2}\right){\cdot}\left(8x-7{x}^{4}+4x\right) $ | 1 |
| 2991 | $ \dfrac{10+10{x}^{9}}{3{x}^{8}} $ | 1 |
| 2992 | $ 4000 $ | 1 |
| 2993 | $ 3{x}^{2}-10x+34 $ | 1 |
| 2994 | $ {\left(\dfrac{x}{50}\right)}^{2} $ | 1 |
| 2995 | $ 0.2{\cdot}\sin\left(x\right) $ | 1 |
| 2996 | $ \dfrac{2x}{1+{x}^{2}} $ | 1 |
| 2997 | $ \left(2x+1\right){\cdot}\left(x+5\right) $ | 1 |
| 2998 | $ \left(2x+1\right){\cdot}\left(x+5\right) $ | 1 |
| 2999 | $ 4xarctg{\cdot}\dfrac{x}{2}+\sin\left(\color{orangered}{\square}\right) $ | 1 |
| 3000 | $ 6{\cdot}\sqrt{{x}^{3}} $ | 1 |