Derivative
(the database of solved problems)
All the problems and solutions shown below were generated using the Derivative Calculator.
| ID |
Problem |
Count |
| 1651 | $ \, x \, $ | 2 |
| 1652 | $ 3{\cdot}\arccos\left(\dfrac{x}{2}\right) $ | 2 |
| 1653 | $ \, x \, $ | 2 |
| 1654 | $ \, x \, $ | 2 |
| 1655 | $ 0.199549641426{x}^{2}-2.63950880283x+10.75541658 $ | 2 |
| 1656 | $ -0.10950021672{\cdot}\left(x-87.179452744\right){\cdot}\left(x-85\right)+20.8971868225 $ | 2 |
| 1657 | $ \dfrac{1}{2}{\cdot}{\left(\arccos\left(3\right)\right)}^{x} $ | 2 |
| 1658 | $ {\left(\dfrac{4}{3}{\cdot}x\right)}^{2} $ | 2 |
| 1659 | $ \sqrt{{a}^{2}-{x}^{2}} $ | 2 |
| 1660 | $ 0.4{\cdot}\cos\left({\pi}\right){\cdot}x $ | 2 |
| 1661 | $ 0.4{\cdot}\cos\left({\pi}{\cdot}x\right) $ | 2 |
| 1662 | $ \dfrac{16}{3}{\cdot}\sin\left(\color{orangered}{\square}\right) $ | 2 |
| 1663 | $ {5}^{\sqrt{2}} $ | 2 |
| 1664 | $ \, x \, $ | 2 |
| 1665 | $ \dfrac{\sin\left(0.5{\cdot}\sqrt{x}\right)}{x} $ | 2 |
| 1666 | $ \left(2{x}^{4}+3\right){\cdot}\left({x}^{2}+1\right) $ | 2 |
| 1667 | $ \dfrac{9x}{\sin\left(x\right)-\cos\left(x\right)} $ | 2 |
| 1668 | $ \, x \, $ | 2 |
| 1669 | $ {\left({x}^{2}+2x+1\right)}^{2.5} $ | 2 |
| 1670 | $ \, x \, $ | 2 |
| 1671 | $ c{\cdot}{\mathrm{e}}^{-2x} $ | 2 |
| 1672 | $ 8{x}^{5}+\sqrt{4x}+{\mathrm{e}}^{{\left(3x\right)}^{3}} $ | 2 |
| 1673 | $ \dfrac{8{x}^{5}{\cdot}\sqrt{4x}+{\mathrm{e}}^{{\left(3x\right)}^{3}}}{\sin\left(x\right){\cdot}\cos\left({x}^{4}\right)} $ | 2 |
| 1674 | $ 3{\mathrm{e}}^{\sin\left(x\right)} $ | 2 |
| 1675 | $ \dfrac{18}{x}-1 $ | 2 |
| 1676 | $ y $ | 2 |
| 1677 | $ {x}^{2}+2 $ | 2 |
| 1678 | $ \dfrac{{x}^{3}}{{\left({x}^{2}-2\right)}^{4}} $ | 2 |
| 1679 | $ \dfrac{{x}^{3}}{{\left({x}^{2}-2\right)}^{4}} $ | 2 |
| 1680 | $ \dfrac{800\mathrm{e}}{1+3\mathrm{e}} $ | 2 |
| 1681 | $ x{\cdot}{\left(6-2x\right)}^{2} $ | 2 |
| 1682 | $ \mathrm{e}^{-15000t}{\cdot}40s{\cdot}i{\cdot}m{\cdot}30000t $ | 2 |
| 1683 | $ \sin\left(30000t\right){\cdot}40{\cdot}\mathrm{e}^{-15000t} $ | 2 |
| 1684 | $ \sin\left(30000t\right){\cdot}40{\cdot}\mathrm{e}^{-15000t} $ | 2 |
| 1685 | $ \left(2+{x}^{3}\right){\cdot}\left(5-\sqrt{x}\right) $ | 2 |
| 1686 | $ x+\ln\left(x\right)-5 $ | 2 |
| 1687 | $ 40{x}^{\frac{1}{3}} $ | 2 |
| 1688 | $ 2+\dfrac{16t}{{\left({t}^{2}+1\right)}^{2}} $ | 2 |
| 1689 | $ 2{\cdot}\tan\left(\dfrac{x}{2}\right)-x $ | 2 |
| 1690 | $ \dfrac{{\left(\ln\left(x\right)\right)}^{1}}{2} $ | 2 |
| 1691 | $ 35{\cdot}{0.9}^{x} $ | 2 |
| 1692 | $ 5{\mathrm{e}}^{-9}{\cdot}{x}^{10}-5{x}^{9} $ | 2 |
| 1693 | $ \dfrac{\tan\left(x\right)-3x}{x-\sin\left(3x\right)} $ | 2 |
| 1694 | $ \sin\left(\dfrac{t}{\sqrt{t}}+2\right) $ | 2 |
| 1695 | $ 0.75{x}^{-1} $ | 2 |
| 1696 | $ \dfrac{15{x}^{6}-3x}{3}{\cdot}{x}^{4} $ | 2 |
| 1697 | $ 10x-3 $ | 2 |
| 1698 | $ \sqrt{{\mathrm{e}}^{-x}-{\mathrm{e}}^{-2x}} $ | 2 |
| 1699 | $ {\pi}{\cdot}{x}^{2} $ | 2 |
| 1700 | $ \sqrt{8x}+9 $ | 2 |