Derivative
(the database of solved problems)
All the problems and solutions shown below were generated using the Derivative Calculator.
| ID |
Problem |
Count |
| 1551 | $ {\left(\dfrac{\ln\left(x\right)}{{x}^{4}}\right)}^{8} $ | 2 |
| 1552 | $ {\left(8t-{t}^{2}\right)}^{\frac{2}{3}} $ | 2 |
| 1553 | $ \cos\left(2\right){\cdot}{x}^{5}{\cdot}\left(4{x}^{2}+3\right) $ | 2 |
| 1554 | $ \left(x-y\right){\cdot}{\mathrm{e}}^{-x}-y $ | 2 |
| 1555 | $ \left(x-y\right){\cdot}{\mathrm{e}}^{-x-y} $ | 2 |
| 1556 | $ \left(a-x\right){\cdot}{\mathrm{e}}^{-x-a} $ | 2 |
| 1557 | $ 2{\mathrm{e}}^{x}{\cdot}{x}^{2} $ | 2 |
| 1558 | $ {\mathrm{e}}^{\frac{-2}{x}} $ | 2 |
| 1559 | $ {x}^{{x}} $ | 2 |
| 1560 | $ 6{\cdot}\sqrt{x}+8{x}^{\frac{1}{4}} $ | 2 |
| 1561 | $ \dfrac{16}{xyz} $ | 2 |
| 1562 | $ {\left(2x-3\right)}^{1.25} $ | 2 |
| 1563 | $ \dfrac{{\mathrm{e}}^{x}}{{\mathrm{e}}^{x}+8} $ | 2 |
| 1564 | $ 50{\cdot}\ln\left(40\right) $ | 2 |
| 1565 | $ \ln\left(\sec\left(x\right)+\tan\left(x\right)\right) $ | 2 |
| 1566 | $ {\left({\mathrm{e}}^{3x}-2\right)}^{\frac{1}{2}} $ | 2 |
| 1567 | $ 3{\cdot}{\left({x}^{2}-3x\right)}^{2}{\cdot}\left(2x-3\right) $ | 2 |
| 1568 | $ 0.11215{x}^{2}-(\dfrac{4.47895x}{0.58876+0.21542{x}^{2}}) $ | 2 |
| 1569 | $ \dfrac{-2{x}^{2}+x+18}{9-{x}^{2}} $ | 2 |
| 1570 | $ {{\pi}}^{-1}{\cdot}{\mathrm{e}}^{2x}{\cdot}49{x}^{2}{\cdot}{\left(\ln\left(5\right)\right)}^{2}{\cdot}25{x}^{6} $ | 2 |
| 1571 | $ \dfrac{-2{x}^{2}+x+18}{9-{x}^{2}} $ | 2 |
| 1572 | $ {\mathrm{e}}^{x}-\dfrac{1}{x} $ | 2 |
| 1573 | $ \, x \, $ | 2 |
| 1574 | $ \dfrac{4x}{2x+1} $ | 2 |
| 1575 | $ \tan\left(\dfrac{1}{x}\right) $ | 2 |
| 1576 | $ 4{\cdot}{2}^{3x}+7 $ | 2 |
| 1577 | $ \, x \, $ | 2 |
| 1578 | $ \dfrac{x+1}{x-1} $ | 2 |
| 1579 | $ \dfrac{2{x}^{2}+1}{{x}^{2}+2} $ | 2 |
| 1580 | $ {\mathrm{e}}^{\frac{-x}{2}} $ | 2 |
| 1581 | $ {x}^{\frac{1}{3}}+\dfrac{1}{{x}^{6}} $ | 2 |
| 1582 | $ \, x \, $ | 2 |
| 1583 | $ 10000{\cdot}{1.5}^{-x} $ | 2 |
| 1584 | $ \, x \, $ | 2 |
| 1585 | $ 4.9{x}^{2} $ | 2 |
| 1586 | $ \dfrac{{\left(3-x\right)}^{2}}{3}{\cdot}\sqrt{x} $ | 2 |
| 1587 | $ 50{\cdot}\tan\left(x\right) $ | 2 |
| 1588 | $ \dfrac{5{x}^{2}-9x+8}{{x}^{2}+1} $ | 2 |
| 1589 | $ \, x \, $ | 2 |
| 1590 | $ \dfrac{42{x}^{2}+56x}{{\left(2x+5\right)}^{3}} $ | 2 |
| 1591 | $ \dfrac{\ln\left({\mathrm{e}}^{x}{\cdot}{x}^{2}\right)}{{\left(\sin\left(x\right)\right)}^{5}} $ | 2 |
| 1592 | $ \dfrac{1}{{\mathrm{e}}^{2-5x}} $ | 2 |
| 1593 | $ \dfrac{1-\sqrt{x}}{2}-2x $ | 2 |
| 1594 | $ \dfrac{1-\sqrt{x}}{2-2x} $ | 2 |
| 1595 | $ \dfrac{\left({x}^{2}+7\right){\cdot}\left({x}^{3}+6\right)}{{x}^{2}}+1 $ | 2 |
| 1596 | $ \dfrac{\left({x}^{2}+7\right){\cdot}\left({x}^{3}+6\right)}{{x}^{2}+1} $ | 2 |
| 1597 | $ \dfrac{8{a}^{3}}{\dfrac{2}{a}{\cdot}{\left({x}^{2}-\dfrac{60}{50}\right)}^{2}+4{a}^{2}}+0.28 $ | 2 |
| 1598 | $ \dfrac{8{a}^{3}}{\dfrac{2}{a}{\cdot}{\left({x}^{2}-\dfrac{60}{50}\right)}^{2}+4{a}^{2}} $ | 2 |
| 1599 | $ \dfrac{8{a}^{3}}{\dfrac{2}{a}{\cdot}{\left({x}^{2}-1.38\right)}^{2}+4{a}^{2}} $ | 2 |
| 1600 | $ \dfrac{8{a}^{3}}{\dfrac{2}{a}{\cdot}{\left({x}^{2}-1.38\right)}^{2}+4{a}^{2}}+0.28 $ | 2 |