Derivative
(the database of solved problems)
All the problems and solutions shown below were generated using the Derivative Calculator.
| ID |
Problem |
Count |
| 901 | $ {\left(\dfrac{3x-7}{2-5x}\right)}^{6} $ | 2 |
| 902 | $ \dfrac{11{\cdot}\ln\left(x\right)}{\sqrt{{x}^{7}}} $ | 2 |
| 903 | $ \dfrac{3t-2}{5t+1} $ | 2 |
| 904 | $ \dfrac{{x}^{3}}{0.3} $ | 2 |
| 905 | $ {\mathrm{e}}^{-\frac{{x}^{2}}{3}} $ | 2 |
| 906 | $ {\left(4+6x\right)}^{\frac{2}{x}} $ | 2 |
| 907 | $ \sqrt{20}+\sqrt{8}{\cdot}x $ | 2 |
| 908 | $ \sqrt{20+8x} $ | 2 |
| 909 | $ \dfrac{\ln\left(6+{\mathrm{e}}^{x}\right)}{6-{\mathrm{e}}^{x}} $ | 2 |
| 910 | $ 7{\cdot}\sqrt{x}+{\mathrm{e}}^{3x}{\cdot}\ln\left(x\right) $ | 2 |
| 911 | $ \dfrac{{\left({x}^{3}+2x\right)}^{5}}{{\left(3{x}^{2}+2\right)}^{2}} $ | 2 |
| 912 | $ \sqrt{9}{\cdot}x-50x+3 $ | 2 |
| 913 | $ \sqrt{9}{\cdot}x-\sqrt{50}{\cdot}x-\sqrt{3} $ | 2 |
| 914 | $ \, x \, $ | 2 |
| 915 | $ 5{\cdot}\sin\left(\dfrac{x-25}{5}\right)+25 $ | 2 |
| 916 | $ {\left(\dfrac{2x+1}{3x-1}\right)}^{4} $ | 2 |
| 917 | $ \dfrac{200}{\tan\left(x\right)} $ | 2 |
| 918 | $ 0.5{\cdot}\left(thx+1\right) $ | 2 |
| 919 | $ \sqrt{8x} $ | 2 |
| 920 | $ s{\cdot}5{x}^{0} $ | 2 |
| 921 | $ \dfrac{100}{2}+9{\mathrm{e}}^{3}{\cdot}x $ | 2 |
| 922 | $ \dfrac{100}{2+9{\mathrm{e}}^{3}{\cdot}x} $ | 2 |
| 923 | $ \cot\left(x\right) $ | 2 |
| 924 | $ {x}^{3}+1 $ | 2 |
| 925 | $ \dfrac{3x-2}{5x+1} $ | 2 |
| 926 | $ {\left({\mathrm{e}}^{x}\right)}^{3} $ | 2 |
| 927 | $ \, x \, $ | 2 |
| 928 | $ 3x{\cdot}\left(18{x}^{4}+\dfrac{13}{x}+1\right) $ | 2 |
| 929 | $ 80{\cdot}{10}^{-25}+20 $ | 2 |
| 930 | $ \sqrt{125} $ | 2 |
| 931 | $ \dfrac{3}{2}{\cdot}\sqrt{x} $ | 2 |
| 932 | $ \, x \, $ | 2 |
| 933 | $ 3{\cdot}\sin\left(th{\cdot}\mathrm{e}{\cdot}ta\right)+5 $ | 2 |
| 934 | $ \tan\left(\color{orangered}{\square}\right) $ | 2 |
| 935 | $ \dfrac{\sin\left(\sqrt{x}\right)}{x} $ | 2 |
| 936 | $ -5{\mathrm{e}}^{x}{\cdot}\cot\left(8x\right) $ | 2 |
| 937 | $ -5{\mathrm{e}}^{x}{\cdot}\cot\left(8x\right) $ | 2 |
| 938 | $ \mathrm{arccot}\left(\sqrt{4}\right){\cdot}t $ | 2 |
| 939 | $ 5{\cdot}{\left(5{x}^{9}-2{x}^{6}\right)}^{5} $ | 2 |
| 940 | $ {5}^{2{\cdot}\sqrt{t}} $ | 2 |
| 941 | $ {5}^{2{\cdot}\sqrt{t}} $ | 2 |
| 942 | $ {\left(\sinh\left(5{x}^{3}-4{x}^{2}+11\right)\right)}^{-1} $ | 2 |
| 943 | $ -10x{\cdot}{\mathrm{e}}^{-{x}^{2}} $ | 2 |
| 944 | $ \, x \, $ | 2 |
| 945 | $ \, x \, $ | 2 |
| 946 | $ \, x \, $ | 2 |
| 947 | $ \sqrt{\dfrac{{\left(x+1\right)}^{5}}{{\left(x+6\right)}^{4}}} $ | 2 |
| 948 | $ \sqrt{4000}{\cdot}{x}^{2} $ | 2 |
| 949 | $ 1600x{\cdot}\cos\left(4{\cdot}\sqrt{x}+0.5\right)+12 $ | 2 |
| 950 | $ \dfrac{x}{\sqrt{1}+2x} $ | 2 |