Derivative
(the database of solved problems)
All the problems and solutions shown below were generated using the Derivative Calculator.
| ID |
Problem |
Count |
| 5851 | $ -80{\cdot}\sin\left(10{t}^{2}\right) $ | 1 |
| 5852 | $ {x}^{x}+\ln\left({x}^{\ln\left(x+3\right)}\right) $ | 1 |
| 5853 | $ \sqrt{\dfrac{{x}^{x}}{\ln\left({3}^{x}+\cos\left(5{x}^{4}\right)\right)}-\arctan\left({\mathrm{e}}^{\ln\left(5x+\cos\left(3x\right)\right)}\right)} $ | 1 |
| 5854 | $ \dfrac{{x}^{2}-2x}{3}{\cdot}x $ | 1 |
| 5855 | $ \ln\left(50\right) $ | 1 |
| 5856 | $ 2{x}^{2}{\cdot}\sqrt{x+1} $ | 1 |
| 5857 | $ \dfrac{1}{2}{\cdot}\left(4-{x}^{2}\right) $ | 1 |
| 5858 | $ {\left(4-x\right)}^{\frac{2}{3}} $ | 1 |
| 5859 | $ \dfrac{8}{x}+\dfrac{{x}^{2}}{2} $ | 1 |
| 5860 | $ {\left({x}^{2}+x\right)}^{11} $ | 1 |
| 5861 | $ \, x \, $ | 1 |
| 5862 | $ {9}{\sin{{\left({6}\right)}}} $ | 1 |
| 5863 | $ \dfrac{x}{{\left(6x-5\right)}^{9}} $ | 1 |
| 5864 | $ 13{\cdot}\sin\left(\color{orangered}{\square}\right) $ | 1 |
| 5865 | $ 13{\cdot}\sin\left(\color{orangered}{\square}\right) $ | 1 |
| 5866 | $ {x}{\exp{{\left({2}{x}\right)}}} $ | 1 |
| 5867 | $ \left(20-16{x}^{3}\right){\cdot}\sec\left({x}^{4}-5x\right){\cdot}\tan\left({x}^{4}-5x\right){\cdot}dx $ | 1 |
| 5868 | $ \dfrac{2{x}^{2}+3x+2}{\sqrt{x}} $ | 1 |
| 5869 | $ \, x \, $ | 1 |
| 5870 | $ \dfrac{2{x}^{3}-5}{\sqrt{x}} $ | 1 |
| 5871 | $ \, x \, $ | 1 |
| 5872 | $ \, x \, $ | 1 |
| 5873 | $ \, x \, $ | 1 |
| 5874 | $ \, x \, $ | 1 |
| 5875 | $ \, x \, $ | 1 |
| 5876 | $ \dfrac{\sin\left(g\right)}{x} $ | 1 |
| 5877 | $ {x}^{2}+\ln\left(x\right) $ | 1 |
| 5878 | $ \cos\left(x\right){\cdot}\left(3x+2\right) $ | 1 |
| 5879 | $ 3x-4 $ | 1 |
| 5880 | $ 3x-4 $ | 1 |
| 5881 | $ \dfrac{1}{25}{\cdot}\left(x-1\right){\cdot}\left(x+7\right){\cdot}\left(x+9\right){\cdot}\left(x-2\right) $ | 1 |
| 5882 | $ \dfrac{\sin\left(x\right)}{{8}^{x}} $ | 1 |
| 5883 | $ \dfrac{16}{3}{\cdot}{\left(5x-2\right)}^{3} $ | 1 |
| 5884 | $ \sqrt{\sin\left(x\right)+\tan\left(x\right)} $ | 1 |
| 5885 | $ \dfrac{x}{2}{\cdot}\sqrt{4{x}^{2}+3}+\dfrac{3}{4}{\cdot}\ln\left(2x+(\sqrt{4{x}^{2}+3})\right) $ | 1 |
| 5886 | $ \dfrac{1}{{x}^{2}}+4{\cdot}{\left(\sqrt{x}\right)}^{3} $ | 1 |
| 5887 | $ 60{\cdot}\cos\left(x\right) $ | 1 |
| 5888 | $ \, x \, $ | 1 |
| 5889 | $ \dfrac{{x}^{2}-3}{x+2} $ | 1 |
| 5890 | $ 750x{\cdot}{\mathrm{e}}^{-1.5x} $ | 1 |
| 5891 | $ 4{x}^{3}+9x $ | 1 |
| 5892 | $ \sqrt{{\mathrm{e}}^{3x}-2} $ | 1 |
| 5893 | $ \ln\left(2x+5\right) $ | 1 |
| 5894 | $ \, x \, $ | 1 |
| 5895 | $ \ln\left(\dfrac{4{x}^{4}{\cdot}\sin\left(-7x\right)}{3x-3}\right) $ | 1 |
| 5896 | $ \, x \, $ | 1 |
| 5897 | $ \, x \, $ | 1 |
| 5898 | $ \, x \, $ | 1 |
| 5899 | $ \, x \, $ | 1 |
| 5900 | $ \, x \, $ | 1 |