Derivative
(the database of solved problems)
All the problems and solutions shown below were generated using the Derivative Calculator.
| ID |
Problem |
Count |
| 5201 | $ \dfrac{8{x}^{2}+3}{{x}^{5}} $ | 1 |
| 5202 | $ \left(2{x}^{2}-5\right){\cdot}\left(6{x}^{3}+8\right) $ | 1 |
| 5203 | $ \dfrac{2}{x} $ | 1 |
| 5204 | $ \dfrac{2}{x} $ | 1 |
| 5205 | $ 90-0.5q $ | 1 |
| 5206 | $ \, x \, $ | 1 |
| 5207 | $ 10xh+5{h}^{2}+6h $ | 1 |
| 5208 | $ {\left({x}^{6}+4\right)}^{\sin\left(4x\right)} $ | 1 |
| 5209 | $ \dfrac{-6{x}^{\frac{1}{10}}}{10}{\cdot}{x}^{-7} $ | 1 |
| 5210 | $ 75x $ | 1 |
| 5211 | $ \dfrac{2x+5}{3x-7} $ | 1 |
| 5212 | $ \dfrac{\sqrt{2x+5}-(\sqrt{x+7})}{x-2} $ | 1 |
| 5213 | $ x{\cdot}\cos\left(2\right){\cdot}x $ | 1 |
| 5214 | $ \left(x-2\right){\cdot}\left({\left(\sqrt{x}\right)}^{2}+16\right) $ | 1 |
| 5215 | $ 600x{\cdot}\ln\left(x\right)+1 $ | 1 |
| 5216 | $ 0.5t $ | 1 |
| 5217 | $ \, x \, $ | 1 |
| 5218 | $ \dfrac{x+1}{{x}^{2}} $ | 1 |
| 5219 | $ \, x \, $ | 1 |
| 5220 | $ \, x \, $ | 1 |
| 5221 | $ \, x \, $ | 1 |
| 5222 | $ \, x \, $ | 1 |
| 5223 | $ \, x \, $ | 1 |
| 5224 | $ \, x \, $ | 1 |
| 5225 | $ \, x \, $ | 1 |
| 5226 | $ \, x \, $ | 1 |
| 5227 | $ \, x \, $ | 1 |
| 5228 | $ \dfrac{1}{1000} $ | 1 |
| 5229 | $ \sqrt{3}+\sin\left(10\right){\cdot}x $ | 1 |
| 5230 | $ {d}^{2}-{\left(\dfrac{12}{x}-2h\right)}^{2}-\dfrac{{x}^{2}}{4} $ | 1 |
| 5231 | $ -4{\cdot}{\left(\dfrac{6}{x}-x\right)}^{2} $ | 1 |
| 5232 | $ y $ | 1 |
| 5233 | $ \dfrac{2{x}^{6}-7{x}^{5}+2}{{x}^{4}} $ | 1 |
| 5234 | $ \, x \, $ | 1 |
| 5235 | $ \, x \, $ | 1 |
| 5236 | $ \, x \, $ | 1 |
| 5237 | $ \, x \, $ | 1 |
| 5238 | $ \, x \, $ | 1 |
| 5239 | $ \dfrac{{x}^{3}+6{x}^{2}+5x}{x+1.5} $ | 1 |
| 5240 | $ \dfrac{{x}^{3}+6{x}^{2}+5x}{x+1.5}{\cdot}k $ | 1 |
| 5241 | $ \dfrac{4000}{t+100} $ | 1 |
| 5242 | $ \dfrac{4000}{x+100} $ | 1 |
| 5243 | $ \dfrac{x+100}{2}-(\dfrac{4000}{x+100}) $ | 1 |
| 5244 | $ \dfrac{4000}{x+100} $ | 1 |
| 5245 | $ \dfrac{x+100}{2}-(\dfrac{4000}{x+100}) $ | 1 |
| 5246 | $ -{\pi}{\cdot}\sin\left({\pi}{\cdot}x\right) $ | 1 |
| 5247 | $ -3{x}^{5}-20{x}^{3}+50 $ | 1 |
| 5248 | $ {\left({x}^{2}+2x\right)}^{25} $ | 1 |
| 5249 | $ \dfrac{1}{10}{\cdot}t{\cdot}{\left(8-t\right)}^{2} $ | 1 |
| 5250 | $ {x}^{31}{\cdot}\left({x}^{6}+8{x}^{4}-9\right) $ | 1 |