STEP 1: find radius $ r $
To find radius $ r $ use formula:
$$ d = 2 \cdot r $$After substituting $d = 27.056\, \text{cm}$ we have:
$$ 27.056\, \text{cm} = 2 \cdot r $$ $$ r = \dfrac{ 27.056\, \text{cm} }{ 2 } $$ $$ r = 13.528\, \text{cm} $$STEP 2: find side $ h $
To find side $ h $ use Pythagorean Theorem:
$$ r^2 + h^2 = l^2 $$After substituting $r = 13.528\, \text{cm}$ and $l = 25\, \text{cm}$ we have:
$$ \left( 13.528\, \text{cm} \right)^{2} + h^2 = \left( 25\, \text{cm} \right)^{2} $$ $$ h^2 = \left( 25\, \text{cm} \right)^{2} - \left( 13.528\, \text{cm} \right)^{2} $$ $$ h^2 = 625\, \text{cm}^2 - 183.0068\, \text{cm}^2 $$ $$ h^2 = 441.9932\, \text{cm}^2 $$ $$ h = \sqrt{ 441.9932\, \text{cm}^2 } $$$$ h = 21.0236\, \text{cm} $$STEP 3: find volume $ V $
To find volume $ V $ use formula:
$$ V = \dfrac{ h ^{ 2 } \cdot r \cdot \pi}{ 3 } $$After substituting $r = 13.528\, \text{cm}$ and $h = 21.0236\, \text{cm}$ we have:
$$ V = \dfrac{ 441.9932\, \text{cm}^2 \cdot 13.528\, \text{cm} \cdot \pi}{ 3 }$$$$ V = \dfrac{ 5979.2842\, \text{cm}^3 \, \pi}{ 3 } $$$$ V = 1993.0947\pi\, \text{cm}^3 $$