To find radius $ r $ use formula:
$$ V = \dfrac{ h ^{ 2 } \cdot r \cdot \pi}{ 3 } $$After substituting $V = 803.84\, \text{cm}$ and $h = 12\, \text{cm}$ we have:
$$ 803.84\, \text{cm} = \dfrac{ 12\, \text{cm} ^{ 2 } \cdot r \cdot \pi}{ 3 } $$$$ 803.84\, \text{cm} \cdot 3 = 12\, \text{cm} ^{ 2 } \cdot r \cdot \pi $$$$ 2411.52\, \text{cm} = 144\, \text{cm}^2 \cdot r \cdot \pi $$$$ r = \dfrac{ 2411.52\, \text{cm} }{ 144\, \text{cm}^2 \, \pi} $$$$ r = 5.3306\, \text{cm}^-1 $$