Arithmetic sequences
(the database of solved problems)
All the problems and solutions shown below were generated using the Arithmetic sequences.
| ID |
Problem |
Count |
| 3551 | Find $ a_{ 13 } $ of an arithmetic progression if $ a_1 = 5 ~~ \text{and} ~~ d = 2 $. | 2 |
| 3552 | Find $ S_{ 13 } $ ( sum of first $ 13 $ terms ) of arithmetic progression if $ a_1 = 5 ~~ \text{and} ~~ d = 2 $. | 2 |
| 3553 | Find $ a_{ 81 } $ of an arithmetic progression if $ a_1 = 156 ~~ \text{and} ~~ d = 23 $. | 2 |
| 3554 | Find $ S_{ 81 } $ ( sum of first $ 81 $ terms ) of arithmetic progression if $ a_1 = 156 ~~ \text{and} ~~ d = 23 $. | 2 |
| 3555 | Find $ a_{ 10000 } $ of an arithmetic progression if $ a_1 = 500 ~~ \text{and} ~~ d = 500 $. | 2 |
| 3556 | Find $ S_{ 20 } $ ( sum of first $ 20 $ terms ) of arithmetic progression if $ a_1 = 500 ~~ \text{and} ~~ d = 500 $. | 2 |
| 3557 | Find $ a_{ 23 } $ of an arithmetic progression if $ a_1 = -9 ~~ \text{and} ~~ d = 9 $. | 2 |
| 3558 | Find $ a_{ 74 } $ of an arithmetic progression if $ a_1 = -3 ~~ \text{and} ~~ d = 0 $. | 2 |
| 3559 | Find $ S_{ 900 } $ ( sum of first $ 900 $ terms ) of arithmetic progression if $ a_1 = 3 ~~ \text{and} ~~ d = 9 $. | 2 |
| 3560 | $$ a_1 = 16 ~,~ d = -3 ~,~ a_n = -6 ~,~ n = ? $$ | 2 |
| 3561 | Find $ S_{ 10 } $ ( sum of first $ 10 $ terms ) of arithmetic progression if $ a_1 = 10 ~~ \text{and} ~~ d = 7 $. | 2 |
| 3562 | Find $ a_{ 0 } $ of an arithmetic progression if $ a_1 = 8 ~~ \text{and} ~~ d = 2 $. | 2 |
| 3563 | Find $ S_{ 10 } $ ( sum of first $ 10 $ terms ) of arithmetic progression if $ a_1 = 8 ~~ \text{and} ~~ d = 2 $. | 2 |
| 3564 | Find $ S_{ 78 } $ ( sum of first $ 78 $ terms ) of arithmetic progression if $ a_1 = 77 ~~ \text{and} ~~ d = 2 $. | 2 |
| 3565 | Find $ a_{ 78 } $ of an arithmetic progression if $ a_1 = 77 ~~ \text{and} ~~ d = 2 $. | 2 |
| 3566 | Find $ a_{ 79 } $ of an arithmetic progression if $ a_1 = 77 ~~ \text{and} ~~ d = 2 $. | 2 |
| 3567 | Find $ S_{ 79 } $ ( sum of first $ 79 $ terms ) of arithmetic progression if $ a_1 = 77 ~~ \text{and} ~~ d = 2 $. | 2 |
| 3568 | Find $ d $ (common difference of arithmetic progression) if $ a_1 = 9 ~~ \text{and} ~~ S_{ 20 } = 1320 $. | 2 |
| 3569 | Find $ a_{ 20 } $ of an arithmetic progression if $ a_1 = 0 ~~ \text{and} ~~ d = \frac{ 333 }{ 100 } $. | 2 |
| 3570 | Find $ S_{ 44 } $ ( sum of first $ 44 $ terms ) of arithmetic progression if $ a_1 = 39 ~~ \text{and} ~~ d = 4 $. | 2 |
| 3571 | $$ a_1 = 19 ~,~ d = 1 ~,~ a_n = 30 ~,~ n = ? $$ | 2 |
| 3572 | Find $ a_{ 12 } $ of an arithmetic progression if $ a_1 = 19 ~~ \text{and} ~~ d = 1 $. | 2 |
| 3573 | Find $ S_{ 12 } $ ( sum of first $ 12 $ terms ) of arithmetic progression if $ a_1 = 19 ~~ \text{and} ~~ d = 1 $. | 2 |
| 3574 | Find $ S_{ 10 } $ ( sum of first $ 10 $ terms ) of arithmetic progression if $ a_1 = 54000 ~~ \text{and} ~~ d = 1600 $. | 2 |
| 3575 | Find $ a_{ 4 } $ of an arithmetic progression if $ a_1 = 7 ~~ \text{and} ~~ d = \left( -14 \right) $. | 2 |
| 3576 | Find $ a_{ 47 } $ of an arithmetic progression if $ a_1 = \frac{ 51 }{ 10 } ~~ \text{and} ~~ d = \frac{ 3 }{ 10 } $. | 2 |
| 3577 | Find $ S_{ 20 } $ ( sum of first $ 20 $ terms ) of arithmetic progression if $ a_1 = -6 ~~ \text{and} ~~ d = 3 $. | 2 |
| 3578 | Find $ a_{ 2 } $ of an arithmetic progression if $ a_1 = 13 ~~ \text{and} ~~ d = \left( -1 \right) $. | 2 |
| 3579 | Find $ a_{ 18 } $ of an arithmetic progression if $ a_1 = 1 ~~ \text{and} ~~ d = 3 $. | 2 |
| 3580 | Find $ a_{ 8 } $ of an arithmetic progression if $ a_1 = 32000 ~~ \text{and} ~~ d = \left( -\frac{ 3 }{ 50 } \right) $. | 2 |
| 3581 | Find $ a_{ 6 } $ of an arithmetic progression if $ a_1 = 180 ~~ \text{and} ~~ d = \left( -50 \right) $. | 2 |
| 3582 | Find $ a_{ 40 } $ of an arithmetic progression if $ a_1 = 11 ~~ \text{and} ~~ d = \left( -4 \right) $. | 2 |
| 3583 | Find $ a_{ 7 } $ of an arithmetic progression if $ a_1 = \frac{ 3 }{ 2 } ~~ \text{and} ~~ d = \frac{ 5 }{ 2 } $. | 2 |
| 3584 | $$ a_1 = 200 ~,~ d = -10 ~,~ a_n = 20 ~,~ n = ? $$ | 2 |
| 3585 | Find $ a_{ 50 } $ of an arithmetic progression if $ a_1 = 1 ~~ \text{and} ~~ d = 7 $. | 2 |
| 3586 | Find $ a_{ 2000 } $ of an arithmetic progression if $ a_1 = 1 ~~ \text{and} ~~ d = 0 $. | 2 |
| 3587 | Find $ a_{ 10 } $ of an arithmetic progression if $ a_1 = \frac{ 47 }{ 10 } ~~ \text{and} ~~ d = \left( -2 \right) $. | 2 |
| 3588 | Find $ S_{ 12 } $ ( sum of first $ 12 $ terms ) of arithmetic progression if $ a_1 = \frac{ 1 }{ 2 } ~~ \text{and} ~~ d = 1 $. | 2 |
| 3589 | Find common difference $ d $ of arithmetic progression if $ a_1 = \frac{ 3 }{ 4 } ~~ \text{and} ~~ a_{ 2 } = \frac{ 5 }{ 8 } $. | 2 |
| 3590 | Find $ a_{ 88 } $ of an arithmetic progression if $ a_1 = 1 ~~ \text{and} ~~ d = 2 $. | 2 |
| 3591 | Find $ S_{ 20 } $ ( sum of first $ 20 $ terms ) of arithmetic progression if $ a_1 = \frac{ 2 }{ 5 } ~~ \text{and} ~~ d = \frac{ 1 }{ 4 } $. | 2 |
| 3592 | Find $ S_{ 2023 } $ ( sum of first $ 2023 $ terms ) of arithmetic progression if $ a_1 = 3 ~~ \text{and} ~~ d = 4 $. | 2 |
| 3593 | Find $ a_{ 3 } $ of an arithmetic progression if $ a_1 = -2 ~~ \text{and} ~~ d = \left( -\frac{ 3 }{ 2 } \right) $. | 2 |
| 3594 | Find $ S_{ 1000 } $ ( sum of first $ 1000 $ terms ) of arithmetic progression if $ a_1 = 50 ~~ \text{and} ~~ d = 33 $. | 2 |
| 3595 | Find $ S_{ 14 } $ ( sum of first $ 14 $ terms ) of arithmetic progression if $ a_1 = 1000 ~~ \text{and} ~~ d = 300 $. | 2 |
| 3596 | $$ a_1 = 0 ~,~ d = 4 ~,~ a_n = 3 ~,~ n = ? $$ | 2 |
| 3597 | Find $ a_{ 1 } $ of an arithmetic progression if $ a_1 = 41600 ~~ \text{and} ~~ d = 1560 $. | 2 |
| 3598 | Find $ S_{ 192 } $ ( sum of first $ 192 $ terms ) of arithmetic progression if $ a_1 = 5 ~~ \text{and} ~~ d = 2 $. | 2 |
| 3599 | Find $ S_{ 30 } $ ( sum of first $ 30 $ terms ) of arithmetic progression if $ a_1 = 1 ~~ \text{and} ~~ d = 2 $. | 2 |
| 3600 | Find $ a_{ 3 } $ of an arithmetic progression if $ a_1 = 5 ~~ \text{and} ~~ d = 2 $. | 2 |