Math Calculators, Lessons and Formulas

It is time to solve your math problem

You included 0 formulas in your custom cheat sheet.

Cheat Sheet options

How to generate cheat sheet ?

To create cheat sheet first you need to select formulas which you want to include in it. To select formula click at picture next to formula.

cheat sheat tutorial 1

You can choose formulas from different pages.

cheat sheat tutorial 2

After you have selected all the formulas which you would like to include in cheat sheet, click the "Generate PDF" button.

cheat sheat tutorial 3

Math Formulas: Triangles in two dimensions

Area of the triangle

The area of the triangle formed by the three lines:

$$ \begin{aligned} A_1x + B_1y + C_1 &= 0 \\ A_2x + B_2y + C_2 &= 0 \\ A_3x + B_3y + C_3 &= 0 \end{aligned} $$

is given by

$$ A = \frac{\begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix}^2} {2\cdot \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} \cdot \begin{vmatrix} A_2 & B_2 \\ A_3 & B_3 \end{vmatrix} \cdot \begin{vmatrix} A_3 & B_3 \\ A_1 & B_1 \end{vmatrix}} $$

The area of a triangle whose vertices are $P_1(x_1, y_1) , P_2(x_2, y_2)$and $P_3(x_3, y_3)$ is given by :

$$ A = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} $$

and by:

$$ A = \frac{1}{2} \begin{vmatrix} x_2-x_1 & y_2-y_1 \\ x_3-x_1 & y_3-y_1 \end{vmatrix} $$

Centroid

The centroid of a triangle whose vertices are $P_1(x_1,y_1), P_2(x_2, y_2)$ and $P_3(x_3, y_3)$ is given by:

$$(x,y) = \left( \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \right) $$

Incenter

The incenter of a triangle whose vertices are $P_1(x_1,y_1), P_2(x_2, y_2)$ and $P_3(x_3, y_3)$ is given by:

$$(x,y) = \left( \frac{a\,x_1+b\,x_2+c\,x_3}{3} , \frac{a\,y_1+b\,y_2+c\,y_3}{3} \right) $$

where $a$ is the length of $P_2P_3$, $b$ is the length of $P_3P_1$, and $c$ is the length of $P_1P_2$.

Circumcenter

The circumcenter of a triangle whose vertices are $P_1(x_1,y_1), P_2(x_2, y_2)$ and $P_3(x_3, y_3)$ is given by:

$$ (x , y) = \left( ~ \frac{\begin{vmatrix} x_1^2+y_1^2 & y_1 & 1 \\ x_2^2+y_2^2 & y_2 & 1 \\ x_3^2+y_3^2 & y_3 & 1 \\ \end{vmatrix}} {2 \cdot \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ \end{vmatrix}}~,~ \frac{\begin{vmatrix} x_1 & x_1^2+y_1^2 & 1 \\ x_2 & x_2^2+y_2^2 & 1 \\ x_3 & x_3^2+y_3^2 & 1 \\ \end{vmatrix}} {2 \cdot \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ \end{vmatrix}}~ \right) $$

Orthocenter

The orthocenter of a triangle whose vertices are $P_1(x_1,y_1), P_2(x_2, y_2)$ and $P_3(x_3, y_3)$ is given by:

$$ (x , y) = \left( ~ \frac{\begin{vmatrix} y_1 & x_2x_3+y_1^2 & 1 \\ y_2 & x_3x_1 + y_2^2 & 1 \\ y_3 & x_1x_2+y_3^2 & 1 \\ \end{vmatrix}} {2 \cdot \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ \end{vmatrix}}~,~ \frac{\begin{vmatrix} x_1^2+y_2y_3 & x_1 & 1 \\ x_2^2+y_3y_1 & x_2 & 1 \\ x_3^2+y_1y_2 & x_3 & 1 \\ \end{vmatrix}} {2 \cdot \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ \end{vmatrix}}~ \right) $$

Were these formulas helpful?

Yes No