Math Calculators, Lessons and Formulas

It is time to solve your math problem

You are here:

Calculators :: Sequences Calculators :: Arithmetic Sequences

This online tool can help you to find $n^{th}$ term and the sum of the first $n$ terms of an arithmetic progression. Also, this calculator can be used to solve much more complicated problems. For example, the calculator can find the common difference ($d$) if $a_5 = 19 $ and $S_7 = 105$. The biggest advantage of this calculator is that it will generate all the work with detailed explanation.

Click here to see a list of example problems that can be solved by using this calculator.

Arithmetic Sequences Calculator

Input first term, common difference and number of terms to find $n^{th}$ term or sum of first $n$ terms. You can use integers, decimals or fractions.

0 1 2 3 4 5 6 7 8 9 - / . del
an Sn
Show me the solution without steps

To find first term a1 and common difference d you need to enter data in two rows.
You can enter either integers (10), decimal numbers(10.12) or FRACTIONS (10/3).

0 1 2 3 4 5 6 7 8 9 - / . del
Show me the solution without steps

To find number of elements n input data in three rows.
You can enter either integers (10), decimal numbers(10.12) or FRACTIONS (10/3).

0 1 2 3 4 5 6 7 8 9 - / . del
Show me the solution without steps

About this calculator

Definition:

Arithmetic sequence is a list of numbers where each number is equal to the previous number, plus a constant. The constant is called the common difference ($d$).

Formulas:

The formula for finding $n^{th}$ term of an arithmetic progression is $\color{blue}{a_n = a_1 + (n-1) d}$, where $\color{blue}{a_1}$ is the first term and $\color{blue}{d}$ is the common difference.

The formulas for the sum of first $n$ numbers are $\color{blue}{S_n = \frac{n}{2} \left( 2a_1 + (n-1)d \right)}$ and $\color{blue}{S_n = \frac{n}{2} \left(a_1 + a_n \right)}$.

Problems that can be solved with this calculator

Example 1: Find the first term ($a_1$) of the arithmetic sequence having $a_8 = 5$ and $d = \frac{4}{3}$.

Set up the form View the solution

Example 2: The 12-th term of an arithmetic progression is 15 and the sum of the first 9 terms is 55. Find the first term ($a_1$) and common difference ($d$).

Set up the form View the solution

Example 3: The first term of an arithmetic progression is -12, and the common difference is 3 determine how many terms must be added together to give a sum of 1104.

Set up the form View the solution

Was this calculator helpful?

Yes No

94 771 072 solved problems