To find side $ a $ use formula:
$$ V = \dfrac{ \sqrt{ 3 } \cdot a ^{ 2 } \cdot l }{ 4 } $$After substituting $V = 224\, \text{cm}$ and $l = 16\, \text{cm}$ we have:
$$ 224\, \text{cm} = \dfrac{ \sqrt{ 3 } \cdot a ^{ 2 } \cdot \left( 16\, \text{cm} \right)^{4} }{ 4 } $$$$ 224\, \text{cm} \cdot 4 = \sqrt{ 3 } \cdot a ^{ 2 } \cdot \left( 16\, \text{cm} \right)^{4} $$$$ 896\, \text{cm} = \sqrt{ 3 } \cdot a ^{ 2 } \cdot \left( 16\, \text{cm} \right)^{4} $$$$ 896\, \text{cm} = 16 \sqrt{ 3 }\, \text{cm} \cdot a ^{ 2 } $$$$ a ^{ 2 } = \dfrac{ 896\, \text{cm}}{ 16 \sqrt{ 3 }\, \text{cm} } $$$$ a ^{ 2 } \approx 10.2914 $$$$ a \approx \sqrt{ 10.2914 } $$$$ a \approx 3.208 $$