STEP 1: find side $ x $
To find side $ x $ use formula:
$$ x = \frac{ a - b } { 2 } $$After substituting $a = 300\, \text{cm}$ and $b = 0.05\, \text{cm}$ we have:
$$ x = \frac{ 300\, \text{cm} - 0.05\, \text{cm} } { 2 } $$ $$ x = \frac{ 299.95\, \text{cm} } { 2 } $$ $$ x = 149.975\, \text{cm} $$STEP 2: find side $ c $
To find side $ c $ use Pythagorean Theorem:
$$ h^2 + x^2 = c^2 $$After substituting $h = 8333\, \text{cm}$ and $x = 149.975\, \text{cm}$ we have:
$$ \left( 8333\, \text{cm} \right)^{2} + \left( 149.975\, \text{cm} \right)^{2} = c^2 $$ $$ 69438889\, \text{cm}^2 + 22492.5006\, \text{cm}^2 = c^2 $$ $$ c^2 = 69461381.5006\, \text{cm}^2 $$ $$ c = \sqrt{ 69461381.5006\, \text{cm}^2 } $$$$ c = 8334.3495\, \text{cm} $$STEP 3: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \sin \left( \alpha \right) = \dfrac{ h }{ c } $$After substituting $h = 8333\, \text{cm}$ and $c = 8334.3495\, \text{cm}$ we have:
$$ \sin \left( \alpha \right) = \dfrac{ 8333\, \text{cm} }{ 8334.3495\, \text{cm} } $$ $$ \sin \left( \alpha \right) = 0.9998 $$ $$ \alpha = \arcsin\left( 0.9998 \right) $$ $$ \alpha = 88.9689^o $$STEP 4: find angle $ \beta $
To find angle $ \beta $ use formula:
$$ \alpha + \beta = 180^o $$After substituting $ \alpha = 88.9689^o $ we have:
$$ 88.9689^o + \beta = 180^o $$ $$ \beta = 180^o - 88.9689^o $$ $$ \beta = 91.0311^o $$