The synthetic division table is:
$$ \begin{array}{c|rrrrr}-1&2&3&-6&-9&-2\\& & -2& -1& 7& \color{black}{2} \\ \hline &\color{blue}{2}&\color{blue}{1}&\color{blue}{-7}&\color{blue}{-2}&\color{orangered}{0} \end{array} $$The remainder when $ 2x^{4}+3x^{3}-6x^{2}-9x-2 $ is divided by $ x+1 $ is $ \, \color{red}{ 0 } $.
We can find remainder using synthetic division method.
Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 1 = 0 $ ( $ x = \color{blue}{ -1 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{-1}&2&3&-6&-9&-2\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}-1&\color{orangered}{ 2 }&3&-6&-9&-2\\& & & & & \\ \hline &\color{orangered}{2}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 2 } = \color{blue}{ -2 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-1}&2&3&-6&-9&-2\\& & \color{blue}{-2} & & & \\ \hline &\color{blue}{2}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 3 } + \color{orangered}{ \left( -2 \right) } = \color{orangered}{ 1 } $
$$ \begin{array}{c|rrrrr}-1&2&\color{orangered}{ 3 }&-6&-9&-2\\& & \color{orangered}{-2} & & & \\ \hline &2&\color{orangered}{1}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 1 } = \color{blue}{ -1 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-1}&2&3&-6&-9&-2\\& & -2& \color{blue}{-1} & & \\ \hline &2&\color{blue}{1}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -6 } + \color{orangered}{ \left( -1 \right) } = \color{orangered}{ -7 } $
$$ \begin{array}{c|rrrrr}-1&2&3&\color{orangered}{ -6 }&-9&-2\\& & -2& \color{orangered}{-1} & & \\ \hline &2&1&\color{orangered}{-7}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ \left( -7 \right) } = \color{blue}{ 7 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-1}&2&3&-6&-9&-2\\& & -2& -1& \color{blue}{7} & \\ \hline &2&1&\color{blue}{-7}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -9 } + \color{orangered}{ 7 } = \color{orangered}{ -2 } $
$$ \begin{array}{c|rrrrr}-1&2&3&-6&\color{orangered}{ -9 }&-2\\& & -2& -1& \color{orangered}{7} & \\ \hline &2&1&-7&\color{orangered}{-2}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ \left( -2 \right) } = \color{blue}{ 2 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-1}&2&3&-6&-9&-2\\& & -2& -1& 7& \color{blue}{2} \\ \hline &2&1&-7&\color{blue}{-2}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -2 } + \color{orangered}{ 2 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}-1&2&3&-6&-9&\color{orangered}{ -2 }\\& & -2& -1& 7& \color{orangered}{2} \\ \hline &\color{blue}{2}&\color{blue}{1}&\color{blue}{-7}&\color{blue}{-2}&\color{orangered}{0} \end{array} $$Remainder is the last entry in the bottom row $ \left(\color{red}{ 0 }\right) $.