The synthetic division table is:
$$ \begin{array}{c|rrrrr}2&1&4&-1&-16&-12\\& & 2& 12& 22& \color{black}{12} \\ \hline &\color{blue}{1}&\color{blue}{6}&\color{blue}{11}&\color{blue}{6}&\color{orangered}{0} \end{array} $$The solution is:
$$ \dfrac{ x^{4}+4x^{3}-x^{2}-16x-12 }{ x-2 } = \color{blue}{x^{3}+6x^{2}+11x+6} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&4&-1&-16&-12\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}2&\color{orangered}{ 1 }&4&-1&-16&-12\\& & & & & \\ \hline &\color{orangered}{1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 1 } = \color{blue}{ 2 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&4&-1&-16&-12\\& & \color{blue}{2} & & & \\ \hline &\color{blue}{1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 4 } + \color{orangered}{ 2 } = \color{orangered}{ 6 } $
$$ \begin{array}{c|rrrrr}2&1&\color{orangered}{ 4 }&-1&-16&-12\\& & \color{orangered}{2} & & & \\ \hline &1&\color{orangered}{6}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 6 } = \color{blue}{ 12 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&4&-1&-16&-12\\& & 2& \color{blue}{12} & & \\ \hline &1&\color{blue}{6}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -1 } + \color{orangered}{ 12 } = \color{orangered}{ 11 } $
$$ \begin{array}{c|rrrrr}2&1&4&\color{orangered}{ -1 }&-16&-12\\& & 2& \color{orangered}{12} & & \\ \hline &1&6&\color{orangered}{11}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 11 } = \color{blue}{ 22 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&4&-1&-16&-12\\& & 2& 12& \color{blue}{22} & \\ \hline &1&6&\color{blue}{11}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -16 } + \color{orangered}{ 22 } = \color{orangered}{ 6 } $
$$ \begin{array}{c|rrrrr}2&1&4&-1&\color{orangered}{ -16 }&-12\\& & 2& 12& \color{orangered}{22} & \\ \hline &1&6&11&\color{orangered}{6}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 6 } = \color{blue}{ 12 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&1&4&-1&-16&-12\\& & 2& 12& 22& \color{blue}{12} \\ \hline &1&6&11&\color{blue}{6}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -12 } + \color{orangered}{ 12 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}2&1&4&-1&-16&\color{orangered}{ -12 }\\& & 2& 12& 22& \color{orangered}{12} \\ \hline &\color{blue}{1}&\color{blue}{6}&\color{blue}{11}&\color{blue}{6}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{3}+6x^{2}+11x+6 } $ with a remainder of $ \color{red}{ 0 } $.