The synthetic division table is:
$$ \begin{array}{c|rrrrr}-4&1&4&2&9&4\\& & -4& 0& -8& \color{black}{-4} \\ \hline &\color{blue}{1}&\color{blue}{0}&\color{blue}{2}&\color{blue}{1}&\color{orangered}{0} \end{array} $$The solution is:
$$ \dfrac{ x^{4}+4x^{3}+2x^{2}+9x+4 }{ x+4 } = \color{blue}{x^{3}+2x+1} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 4 = 0 $ ( $ x = \color{blue}{ -4 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{-4}&1&4&2&9&4\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}-4&\color{orangered}{ 1 }&4&2&9&4\\& & & & & \\ \hline &\color{orangered}{1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -4 } \cdot \color{blue}{ 1 } = \color{blue}{ -4 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-4}&1&4&2&9&4\\& & \color{blue}{-4} & & & \\ \hline &\color{blue}{1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 4 } + \color{orangered}{ \left( -4 \right) } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}-4&1&\color{orangered}{ 4 }&2&9&4\\& & \color{orangered}{-4} & & & \\ \hline &1&\color{orangered}{0}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -4 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-4}&1&4&2&9&4\\& & -4& \color{blue}{0} & & \\ \hline &1&\color{blue}{0}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 2 } + \color{orangered}{ 0 } = \color{orangered}{ 2 } $
$$ \begin{array}{c|rrrrr}-4&1&4&\color{orangered}{ 2 }&9&4\\& & -4& \color{orangered}{0} & & \\ \hline &1&0&\color{orangered}{2}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -4 } \cdot \color{blue}{ 2 } = \color{blue}{ -8 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-4}&1&4&2&9&4\\& & -4& 0& \color{blue}{-8} & \\ \hline &1&0&\color{blue}{2}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 9 } + \color{orangered}{ \left( -8 \right) } = \color{orangered}{ 1 } $
$$ \begin{array}{c|rrrrr}-4&1&4&2&\color{orangered}{ 9 }&4\\& & -4& 0& \color{orangered}{-8} & \\ \hline &1&0&2&\color{orangered}{1}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -4 } \cdot \color{blue}{ 1 } = \color{blue}{ -4 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-4}&1&4&2&9&4\\& & -4& 0& -8& \color{blue}{-4} \\ \hline &1&0&2&\color{blue}{1}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ 4 } + \color{orangered}{ \left( -4 \right) } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}-4&1&4&2&9&\color{orangered}{ 4 }\\& & -4& 0& -8& \color{orangered}{-4} \\ \hline &\color{blue}{1}&\color{blue}{0}&\color{blue}{2}&\color{blue}{1}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{3}+2x+1 } $ with a remainder of $ \color{red}{ 0 } $.